RESUMO
The glucose level in the blood is measured through invasive methods, causing discomfort in the patient, loss of sensitivity in the area where the sample is obtained, and healing problems. This article deals with the design, implementation, and evaluation of a device with an ESP-WROOM-32D microcontroller with the application of near-infrared photospectroscopy technology that uses a diode array that transmits between 830 nm and 940 nm to measure glucose levels in the blood. In addition, the system provides a webpage for the monitoring and control of diabetes mellitus for each patient; the webpage is hosted on a local Linux server with a MySQL database. The tests are conducted on 120 people with an age range of 35 to 85 years; each person undergoes two sample collections with the traditional method and two with the non-invasive method. The developed device complies with the ranges established by the American Diabetes Association: presenting a measurement error margin of close to 3% in relation to traditional blood glucose measurement devices. The purpose of the study is to design and evaluate a device that uses non-invasive technology to measure blood glucose levels. This involves constructing a non-invasive glucometer prototype that is then evaluated in a group of participants with diabetes.
Assuntos
Automonitorização da Glicemia , Glicemia , Diabetes Mellitus , Humanos , Idoso , Glicemia/análise , Pessoa de Meia-Idade , Adulto , Automonitorização da Glicemia/instrumentação , Automonitorização da Glicemia/métodos , Diabetes Mellitus/sangue , Idoso de 80 Anos ou mais , Masculino , Feminino , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Espectroscopia de Luz Próxima ao Infravermelho/instrumentaçãoRESUMO
The failures of binding to the oocyte zona pellucida are commonly attributed to defects in the sperm recognition, adhesion, and fusion molecules. SPAM1 (sperm adhesion molecule 1) is a hyaluronidase implicated in the dispersion of the cumulus-oocyte matrix. Therefore, the aim of this study was to characterize the SPAM1 distribution in the different physiological conditions of human sperm. Specifically, we evaluated the location of the SPAM1 protein in human sperm before capacitation, at one and four hours of capacitation and after hyaluronic acid (HA) selection test by fluorescence microscopy. Sperm bound to HA were considered mature and those that crossed it immature. Our results detected three SPAM1 fluorescent patterns: label throughout the head (P1), equatorial segment with acrosomal faith label (P2), and postacrosomal label (P3). The data obtained after recovering the mature sperm by the HA selection significantly (p < 0.05) highlighted the P1 in both capacitation times, being 79.74 and 81.48% after one hour and four hours, respectively. Thus, the HA test identified that human sperm require the presence of SPAM1 throughout the sperm head (P1) to properly contact the cumulus-oocyte matrix. Overall, our results provide novel insights into the physiological basis of sperm capacitation and could contribute to the improvement of selection techniques.