Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(19): e2321992121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38684000

RESUMO

Tertiary chirality describes the handedness of supramolecular assemblies and relies not only on the primary and secondary structures of the building blocks but also on topological driving forces that have been sparsely characterized. Helical biopolymers, especially DNA, have been extensively investigated as they possess intrinsic chirality that determines the optical, mechanical, and physical properties of the ensuing material. Here, we employ the DNA tensegrity triangle as a model system to locate the tipping points in chirality inversion at the tertiary level by X-ray diffraction. We engineer tensegrity triangle crystals with incremental rotational steps between immobile junctions from 3 to 28 base pairs (bp). We construct a mathematical model that accurately predicts and explains the molecular configurations in both this work and previous studies. Our design framework is extendable to other supramolecular assemblies of helical biopolymers and can be used in the design of chiral nanomaterials, optically active molecules, and mesoporous frameworks, all of which are of interest to physical, biological, and chemical nanoscience.


Assuntos
DNA , Biopolímeros/química , DNA/química , Difração de Raios X , Conformação de Ácido Nucleico , Modelos Moleculares , Estereoisomerismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-37700699

RESUMO

siRNA is an important tool for modulating gene expression in current biomedical research. It would be highly desirable for siRNA to respond to an external stimulus. In this paper, we report a convenient, photolabile caging agent to regulate siRNA functions. 2-bromo-4'-hydroxyacetophenone (BHAP) can readily modify phosphorothioate backbones and inhibit siRNAs. Mild UV irradiation will cleave the modifying moiety to generate natural nucleic acid backbones, thus activating siRNA functions. Such modification is conveniently conducted in an aqueous solution with high efficiency and is cost-effective and scalable. This approach provides a convenient tool for the controlled regulation of gene expression by deploying minimal usage of complex organic synthesis for site-specific installation of the caging group to siRNA unlike previous reported works that required a series of intricate organic synthesis and cumbersome purification techniques to achieve similar aims. This study will open new doors for optochemical regulation of a variety of genes by pHP caging group in mammalian cell culture.


Assuntos
RNA de Cadeia Dupla , Raios Ultravioleta , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Interferência de RNA
3.
J Am Chem Soc ; 145(32): 17945-17953, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37530628

RESUMO

Metal-mediated DNA (mmDNA) presents a pathway toward engineering bioinorganic and electronic behavior into DNA devices. Many chemical and biophysical forces drive the programmable chelation of metals between pyrimidine base pairs. Here, we developed a crystallographic method using the three-dimensional (3D) DNA tensegrity triangle motif to capture single- and multi-metal binding modes across granular changes to environmental pH using anomalous scattering. Leveraging this programmable crystal, we determined 28 biomolecular structures to capture mmDNA reactions. We found that silver(I) binds with increasing occupancy in T-T and U-U pairs at elevated pH levels, and we exploited this to capture silver(I) and mercury(II) within the same base pair and to isolate the titration points for homo- and heterometal base pair modes. We additionally determined the structure of a C-C pair with both silver(I) and mercury(II). Finally, we extend our paradigm to capture cadmium(II) in T-T pairs together with mercury(II) at high pH. The precision self-assembly of heterobimetallic DNA chemistry at the sub-nanometer scale will enable atomistic design frameworks for more elaborate mmDNA-based nanodevices and nanotechnologies.


Assuntos
Mercúrio , Prata , Pareamento de Bases , Prata/química , DNA/química , Mercúrio/química
4.
Langmuir ; 39(33): 11782-11787, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37562139

RESUMO

Tile-based DNA self-assembly is a cost-effective fabrication method for large-scale nanopatterns. Herein, we report a protocol to directly assemble DNA 2D arrays on silicon wafers and then use the DNA nanostructures as molds to fabricate the corresponding nanostructures on the silicon wafers by hydrogen fluoride (HF) etching. Similar HF etching has been used with robust large DNA origami structures as templates. This work demonstrates that DNA nanostructures assembled from small tiles are sufficiently stable for this process. The resulting feature size (∼8.6 nm) approaches the sizes of e-beam lithography. While the reported method is parallel and inexpensive, e-beam lithography is a serial method and is expensive. We expect that this method will be very useful for preparing fine nanopatterns in large areas.


Assuntos
Nanoestruturas , Silício , Silício/química , Porosidade , Nanoestruturas/química , DNA/química
5.
J Am Chem Soc ; 145(36): 19503-19507, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37638713

RESUMO

Tile-based DNA self-assembly provides a versatile approach for the construction of a wide range of nanostructures for various applications such as nanomedicine and advanced materials. The inter-tile interactions are primarily programmed by base pairing, particularly Watson-Crick base pairing. To further expand the tool box for DNA nanotechnology, herein, we have designed DNA tiles that contain both ligands and aptamers. Upon ligand-aptamer binding, tiles associate into geometrically well-defined nanostructures. This strategy has been demonstrated by the assembly of a series of DNA nanostructures, which have been thoroughly characterized by gel electrophoresis and atomic force microscopy. This new inter-tile cohesion could bring new potentials to DNA self-assembly in the future. For example, the addition of free ligand could modulate the nanostructure formation. In the case of biological ligands, DNA self-assembly could be related to the presence of certain ligands.


Assuntos
DNA , Oligonucleotídeos , Ligantes , Pareamento de Bases , Microscopia de Força Atômica
6.
Adv Mater ; 35(29): e2210938, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37268326

RESUMO

DNA double helices containing metal-mediated DNA (mmDNA) base pairs are constructed from Ag+ and Hg2+ ions between pyrimidine:pyrimidine pairs with the promise of nanoelectronics. Rational design of mmDNA nanomaterials is impractical without a complete lexical and structural description. Here, the programmability of structural DNA nanotechnology toward its founding mission of self-assembling a diffraction platform for biomolecular structure determination is explored. The tensegrity triangle is employed to build a comprehensive structural library of mmDNA pairs via X-ray diffraction and generalized design rules for mmDNA construction are elucidated. Two binding modes are uncovered: N3-dominant, centrosymmetric pairs and major groove binders driven by 5-position ring modifications. Energy gap calculations show additional levels in the lowest unoccupied molecular orbitals (LUMO) of mmDNA structures, rendering them attractive molecular electronic candidates.


Assuntos
DNA , Metais , Metais/química , DNA/química , Pareamento de Bases , Pirimidinas/química , Nanotecnologia , Conformação de Ácido Nucleico
7.
Anal Chem ; 95(26): 9754-9760, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37343019

RESUMO

De novo design of functional biomacromolecules is of great interest to a wide range of fundamental science and technological applications, including understanding life evolution and biomacromolecular structures, developing novel catalysts, inventing medicines, and exploring high-performance materials. However, it is an extremely challenging task and its success is very limited. It requires a deep understanding of the relationships among the primary sequences, the 3D structures, and the functions of biomacromolecules. Herein, we report a rational, de novo design of a DNA aptamer that can bind melamine with high specificity and high affinity (dissociation constant Kd = 4.4 nM). The aptamer is essentially a DNA triplex, but contains an abasic site, to which the melamine binds. The aptamer-ligand recognition involves hydrogen-bonding, π-π stacking, and electrostatic interactions. This strategy has been further tested by designing aptamers to bind to guanosine. It is conceivable that such a rational strategy, with further development, would provide a general framework for designing functional DNA molecules.


Assuntos
Aptâmeros de Nucleotídeos , DNA , DNA/química , Aptâmeros de Nucleotídeos/química , Ligação de Hidrogênio
8.
Nanoscale ; 15(23): 9941-9945, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37249191

RESUMO

Surface-assisted, tile-based DNA self-assembly is a powerful method to construct large, two-dimensional (2D) nanoarrays. To further increase the structural complexity, one idea is to incorporate different types of tiles into one assembly system. However, different tiles have different adsorption strengths to the solid surface. The differential adsorptions make it difficult to control the effective molar ratio between different DNA tile concentrations on the solid surface, leading to assembly failure. Herein, we propose a solution to this problem by engineering the tiles with comparable molecular weights while maintaining their architectures. As a demonstration, we have applied this strategy to successfully assemble binary DNA 2D arrays out of very different tiles. We expect that this strategy would facilitate assembly of other complicated nanostructures as well.


Assuntos
DNA , Nanoestruturas , DNA/química , Nanoestruturas/química
9.
J Am Chem Soc ; 145(19): 10475-10479, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37134185

RESUMO

Biology provides plenty of examples on achieving complicated structures out of minimal numbers of building blocks. In contrast, structural complexity of designed molecular systems is achieved by increasing the numbers of component molecules. In this study, the component DNA strand assembles into a highly complex crystal structure via an unusual path of divergence and convergence. This assembly path suggests a route to minimalists for increasing structural complexity. The original purpose of this study is to engineer DNA crystals with high resolution, which is the primary motivation and a key objective for structural DNA nanotechnology. Despite great efforts in the last 40 years, engineered DNA crystals have not yet consistently reached resolution better than 2.5 Å, limiting their potential uses. Our research has shown that small, symmetrical building blocks generally lead to high resolution crystals. Herein, by following this principle, we report an engineered DNA crystal with unprecedented high resolution (2.17 Å) assembled from one single DNA component: an 8-base-long DNA strand. This system has three unique characteristics: (1) It has a very complex architecture, (2) the same DNA strand forms two different structural motifs, both of which are incorporated into the final crystal, and (3) the component DNA molecule is only an 8-base-long DNA strand, which is, arguably, the smallest DNA motif for DNA nanostructures to date. This high resolution opens the possibility of using these DNA crystals to precisely organize guest molecules at the Å level, which could stimulate a range of new investigations.


Assuntos
DNA , Nanoestruturas , DNA/química , Nanoestruturas/química , Nanotecnologia , Motivos de Nucleotídeos , Engenharia , Conformação de Ácido Nucleico
10.
Adv Mater ; 35(33): e2302345, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37220213

RESUMO

DNA self-assembly computation is attractive for its potential to perform massively parallel information processing at the molecular level while at the same time maintaining its natural biocompatibility. It has been extensively studied at the individual molecule level, but not as much as ensembles in 3D. Here, the feasibility of implementing logic gates, the basic computation operations, in large ensembles: macroscopic, engineered 3D DNA crystals is demonstrated. The building blocks are the recently developed DNA double crossover-like (DXL) motifs. They can associate with each other via sticky-end cohesion. Common logic gates are realized by encoding the inputs within the sticky ends of the motifs. The outputs are demonstrated through the formation of macroscopic crystals that can be easily observed. This study points to a new direction of construction of complex 3D crystal architectures and DNA-based biosensors with easy readouts.


Assuntos
DNA , Lógica , DNA/química , Computadores Moleculares
11.
Acta Biomater ; 164: 387-396, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37088158

RESUMO

Short peptides are poor immunogens. One way to increase their immune responses is by arraying immunogens in multivalency. Simple and efficient scaffolds for spatial controlling the inter-antigen distance and enhancing immune activation are required. Here, we report a molecular vaccine design principle that maximally drives potent SARS-CoV-2 RBD subunit vaccine on DNA duplex to induce robust and efficacious immune responses in vivo. We expect that the DNA-peptide epitope platform represents a facile and generalizable strategy to enhance the immune response. STATEMENT OF SIGNIFICANCE: DNA scaffolds offer a biocompatible and convenient platform for arraying immunogens in multivalency antigenic peptides, and spatially control the inter-antigen distance. This can effectively enhance immune response. Peptide (instead of entire protein) vaccines are highly attractive. However, short peptides are poor immunogens. Our DNA scaffolded multivalent peptide immunogen system induced robust and efficacious immune response in vivo as demonstrated by the antigenic peptide against SARS-CoV-2. The present strategy could be readily generalized and adapted to prepare multivalent vaccines against other viruses or disease. Particularly, the different antigens could be integrated into one single vaccine and lead to super-vaccines that can protect the host from multiple different viruses or multiple variants of the same virus.


Assuntos
COVID-19 , Vacinas , Humanos , Vacinas contra COVID-19/farmacologia , SARS-CoV-2 , Vacinas Combinadas , COVID-19/prevenção & controle , Peptídeos , DNA
12.
Analyst ; 148(8): 1858-1866, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36942467

RESUMO

Adenosine levels are important in various physiological and pathological activities, but detecting them is difficult because of interference from a complex matrix. This study designed a series of DNA oligomers rich in thymine to enrich adenosine. Their binding affinity (Kd range: 1.25-5.0 mM) to adenosine varied based on the DNA secondary structures, with a clamped hairpin structure showing the highest binding affinity. Compared to other designs, this clamped DNA hairpin underwent the least conformational change during adenosine binding. These DNAs also suppressed the precipitation of supersaturated adenine. Taken together, these results suggest that thymine-rich DNAs could be used to enrich and separate adenosine.


Assuntos
Adenosina , Timina , Timina/química , Conformação de Ácido Nucleico , DNA/química , Adenina/química
13.
Adv Mater ; : e2201938, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36939292

RESUMO

DNA double helices containing metal-mediated DNA (mmDNA) base pairs have been constructed from Ag+ and Hg2+ ions between pyrimidine:pyrimidine pairs with the promise of nanoelectronics. Rational design of mmDNA nanomaterials has been impractical without a complete lexical and structural description. Here, we explore the programmability of structural DNA nanotechnology toward its founding mission of self-assembling a diffraction platform for biomolecular structure determination. We employed the tensegrity triangle to build a comprehensive structural library of mmDNA pairs via X-ray diffraction and elucidated generalized design rules for mmDNA construction. We uncovered two binding modes: N3-dominant, centrosymmetric pairs and major groove binders driven by 5-position ring modifications. Energy gap calculations showed additional levels in the lowest unoccupied molecular orbitals (LUMO) of mmDNA structures, rendering them attractive molecular electronic candidates. This article is protected by copyright. All rights reserved.

14.
J Am Chem Soc ; 145(8): 4853-4859, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791277

RESUMO

Sequence-selective recognition of DNA duplexes is important for a wide range of applications including regulating gene expression, drug development, and genome editing. Many small molecules can bind DNA duplexes with sequence selectivity. It remains as a challenge how to reliably and conveniently obtain the detailed structural information on DNA-molecule interactions because such information is critically needed for understanding the underlying rules of DNA-molecule interactions. If those rules were understood, we could design molecules to recognize DNA duplexes with a sequence preference and intervene in related biological processes, such as disease treatment. Here, we have demonstrated that DNA crystal engineering is a potential solution. A molecule-binding DNA sequence is engineered to self-assemble into highly ordered DNA crystals. An X-ray crystallographic study of molecule-DNA cocrystals reveals the structural details on how the molecule interacts with the DNA duplex. In this approach, the DNA will serve two functions: (1) being part of the molecule to be studied and (2) forming the crystal lattice. It is conceivable that this method will be a general method for studying drug/peptide-DNA interactions. The resulting DNA crystals may also find use as separation matrices, as hosts for catalysts, and as media for material storage.


Assuntos
DNA , DNA/química , Cristalografia por Raios X , Conformação de Ácido Nucleico
15.
J Am Chem Soc ; 145(6): 3599-3605, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36731121

RESUMO

Reconfigurable structures engineered through DNA hybridization and self-assembly offer both structural and dynamic applications in nanotechnology. Here, we have demonstrated that strand displacement of triplex-forming oligonucleotides (TFOs) can be translated to a robust macroscopic DNA crystal by coloring the crystals with covalently attached fluorescent dyes. We show that three different types of triplex strand displacement are feasible within the DNA crystals and the bound TFOs can be removed and/or replaced by (a) changing the pH from 5 to 7, (b) the addition of the Watson-Crick complement to a TFO containing a short toehold, and (c) the addition of a longer TFO that uses the duplex edge as a toehold. We have also proved by X-ray diffraction that the structure of the crystals remains as designed in the presence of the TFOs.


Assuntos
DNA , Oligonucleotídeos , DNA/química , Oligonucleotídeos/química , Hibridização de Ácido Nucleico , Corantes Fluorescentes , Conformação de Ácido Nucleico
16.
Angew Chem Int Ed Engl ; 62(16): e202218443, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36652628

RESUMO

Small, single-stranded DNA (ssDNA) circles have many applications, such as templating rolling circle amplification (RCA), capturing microRNAs, and scaffolding DNA nanostructures. However, it is challenging to prepare such ssDNA circles, particularly when the DNA size becomes very small (e.g. a 20 nucleotide (nt) long ssDNA circle). Often, such short ssDNA dominantly form concatemers (either linear or circular) due to intermolecular ligation, instead of forming monomeric ssDNA circles by intramolecular ligation. Herein, a simple method to overcome this problem by designing the complementary linker molecules is reported. It is demonstrated that ssDNA, as short as 16 nts, can be enzymatically ligated (by the commonly used T4 DNA ligase) into monomeric ssDNA circles at high concentration (100 µM) with high yield (97 %). This method does not require any special sequence, thus, it is expected to be generally applicable. The experimental protocol is identical to regular DNA ligation, thus, is expected to be user friendly for general chemists and biologists.


Assuntos
DNA de Cadeia Simples , Nanoestruturas , DNA , Nucleotídeos , Nanoestruturas/química , DNA Ligases/metabolismo , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA Circular
17.
Macromol Biosci ; 23(3): e2200453, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36542841

RESUMO

Antisense DNA oligonucleotide (AS) technology is a promising approach to regulate gene expression and cellular processes. For example, ASs can be used to capture the overexpressed, oncogenic miRNAs in tumors to suppress tumor growth. Among many challenges faced by AS approach is the degradation of ASs by nucleases under physiological conditions. Elongating the AS lifespan can substantially enhance the functions of AS. The paper reports a simple strategy to increase the stability of ASs. The authors discover that the ASs degrade quickly if their ends are in unpaired, single-stranded form, but much slower if their ends are in paired duplex form. It is conceivable to integrate this strategy with other strategies (such as chemical modification of ASs backbones) to maximally increase the ASs stabilities.


Assuntos
Neoplasias , Oligonucleotídeos Antissenso , DNA/genética , DNA Antissenso , Neoplasias/genética , Neoplasias/terapia , Oligonucleotídeos , Oligonucleotídeos Antissenso/genética
18.
Nanoscale ; 15(2): 470-475, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36515101

RESUMO

Assembly of complex structures from a small set of tiles is a common theme in biology. For example, many copies of identical proteins make up polyhedron-shaped, viral capsids and tubulin can make long microtubules. This inspired the development of tile-based DNA self-assembly for nanoconstruction, particularly for structures with high symmetries. In the final structure, each type of motif will adopt the same conformation, either rigid or with defined flexibility. For structures that have no symmetry, their assembly remains a challenge from a small set of tiles. To meet this challenge, algorithmic self-assembly has been explored driven by computational science, but it is not clear how to implement this approach to one-dimensional (1D) structures. Here, we have demonstrated that a constant shift of a conformational equilibrium could allow 1D structures to evolve. As shown by atomic force microscopy imaging, one type of DNA tile successfully assembled into DNA spirals and concentric circles, which became less and less curved from the structure's center outward. This work points to a new direction for tile-based DNA assembly.


Assuntos
Nanoestruturas , Nanoestruturas/química , Conformação de Ácido Nucleico , DNA/química , Microscopia de Força Atômica
19.
ACS Macro Lett ; 12(1): 59-64, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36573670

RESUMO

Titin, a giant protein containing multiple tandem domains, is essential in maintaining the superior mechanical performance of muscle. The consecutive and reversible unfolding and refolding of the domains are crucial for titin to serve as a modular spring. Since the discovery of the mechanical features of a single titin molecule, the exploration of biomimetic materials with titin-emulating modular structures has been an active field. However, it remains a challenge to prepare these modular polymers on a large scale due to the complex synthesis process. In this study, we propose modular DNA with multiple hairpins (MH-DNA) as the fundamental block for the bottom-up design of advanced materials. By analyzing the unfolding and refolding dynamics of modular hairpins by atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS), we find that MH-DNA shows comparable stability to those of polyproteins like titin. The unique low hysteresis of modular hairpin makes it an ideal molecular spring with remarkable mechanical efficiency. On the basis of the well-established DNA synthesis techniques, we anticipate that MH-DNA can be used as a promising building block for advanced materials with a combination of superior structural stability, considerable extensibility, and high mechanical efficiency.


Assuntos
Proteínas Musculares , Dobramento de Proteína , Conectina/metabolismo , Proteínas Musculares/química , DNA
20.
Small ; 19(12): e2206511, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36585389

RESUMO

The successful self-assembly of tensegrity triangle DNA crystals heralded the ability to programmably construct macroscopic crystalline nanomaterials from rationally-designed, nanoscale components. This 3D DNA tile owes its "tensegrity" nature to its three rotationally stacked double helices locked together by the tensile winding of a center strand segmented into 7 base pair (bp) inter-junction regions, corresponding to two-thirds of a helical turn of DNA. All reported tensegrity triangles to date have employed ( Z + 2 / 3 ) \[\left( {Z{\bm{ + }}2{\bf /}3} \right)\] turn inter-junction segments, yielding right-handed, antiparallel, "J1" junctions. Here a minimal DNA triangle motif consisting of 3-bp inter-junction segments, or one-third of a helical turn is reported. It is found that the minimal motif exhibits a reversed morphology with a left-handed tertiary structure mediated by a locally-parallel Holliday junction-the "L1" junction. This parallel junction yields a predicted helical groove matching pattern that breaks the pseudosymmetry between tile faces, and the junction morphology further suggests a folding mechanism. A Rule of Thirds by which supramolecular chirality can be programmed through inter-junction DNA segment length is identified. These results underscore the role that global topological forces play in determining local DNA architecture and ultimately point to an under-explored class of self-assembling, chiral nanomaterials for topological processes in biological systems.


Assuntos
DNA , Nanoestruturas , Conformação de Ácido Nucleico , DNA/química , Nanoestruturas/química , Pareamento de Bases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA