Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Environ Pollut ; : 124215, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38797349

RESUMO

Environmental viruses in wastewater and sludge are widely recognized for their roles in waterborne diseases. However, previous studies mainly focused on RNA viruses, and little is known about the diversity of DNA viral communities and their driving factors in municipal wastewater treatment environments. Herein, we conducted a pilot study to explore DNA virus profiles in municipal wastewater and recycled sludge by metagenomics method, and track their temporal changes in northern China. Results showed that 467 viral species were co-shared among all the samples. We identified six families of human viruses with a prevalence of 0.1%, which were rare but relatively stable in wastewater and sludge for six months. Adenoviridae, Parvoviridae, and Herpersviridae were the most dominant human viral families in municipal wastewater and recycled sludge. A time series of samples revealed that the dynamic changes of human DNA viruses were stable based on qPCR results, particularly for high-risk fecal-oral transmission viruses of adenovirus, bocavirus, polyomavirus, human gamma herpesvirus, human papillomavirus, and hepatitis B virus. Concentrations of Adenovirus (5.39-7.48 log10 copies/L) and bocavirus (4.36-7.48 log10 copies/L) were observed to be the highest in these samples compared to other viruses. Our findings demonstrated the DNA viruses' high prevalence and persistence in municipal wastewater treatment environments, highlighting the value of enhancing public health responses based on wastewater-based epidemiology.

2.
J Hazard Mater ; 470: 134102, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554506

RESUMO

The inappropriate use of antibiotics is widely recognized as the primary driver of bacterial antibiotic resistance. However, less attention has been given to the potential induction of multidrug-resistant bacteria through exposure to disinfectants. In this study, Klebsiella pneumonia, an opportunistic pathogen commonly associated with hospital and community-acquired infection, was experimentally exposed to NaClO at both minimum inhibitory concentration (MIC) and sub-MIC levels over a period of 60 days. The result demonstrated that NaClO exposure led to enhanced resistance of K. pneumonia to both NaClO itself and five antibiotics (erythromycin, polymyxin B, gentamicin, tetracycline, and ciprofloxacin). Concurrently, the evolved resistant strains exhibited fitness costs, as evidenced by decreased growth rates. Whole population sequencing revealed that both concentrations of NaClO exposure caused genetic mutations in the genome of K. pneumonia. Some of these mutations were known to be associated with antibiotic resistance, while others had not previously been identified as such. In addition, 11 identified mutations were located in the virulence factors, demonstrating that NaClO exposure may also impact the pathogenicity of K. pneumoniae. Overall, this study highlights the potential for the widespread use of NaClO-containing disinfectants during the COVID-19 pandemic to contribute to the emergence of antibiotic-resistant bacteria. ENVIRONMENTAL IMPLICATION: Considering the potential hazardous effects of disinfectant residues on environment, organisms and biodiversity, the sharp rise in use of disinfectants during COVID-19 pandemic has been considered highly likely to cause worldwide secondary disasters in ecosystems and human health. This study demonstrated that NaClO exposure enhanced the resistance of K. pneumonia to both NaClO and five antibiotics (erythromycin, polymyxin B, gentamicin, tetracycline, and ciprofloxacin), highlighting the widespread use of NaClO-containing disinfectants during the COVID-19 pandemic may increase the emergence of antibiotic-resistant bacteria in the environment.


Assuntos
Antibacterianos , COVID-19 , Desinfetantes , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Antibacterianos/farmacologia , Humanos , Hipoclorito de Sódio/farmacologia , Farmacorresistência Bacteriana , SARS-CoV-2/efeitos dos fármacos , Mutação , Farmacorresistência Bacteriana Múltipla , Infecções por Klebsiella/tratamento farmacológico
3.
J Hazard Mater ; 469: 133892, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38461662

RESUMO

Managed bees commonly suffer from cross-contamination with acaricides and neonicotinoids, posing robust threats to bee population health. However, their residual characteristics and spatial distribution in beehives and surrounding environments are poorly understood. This study detected two common acaricides and five neonicotinoids in 240 beehive samples and 44 surrounding environmental samples collected from 25 Chinese provinces. The results showed that 40.0% of the honey samples contained acaricides and 83.1% contained neonicotinoids. Neonicotinoid concentrations in honey were geographically distinguished by the "Hu Huanyong line", and concentrations of neonicotinoids in honey from eastern areas were 2.65-fold higher than those in honey from western areas. Compared to the approved acaricide amitraz, the banned acaricide coumaphos was detected more frequently in honey and was positively correlated with that quantified in the paired pollen samples. Although coumaphos was identified in only three soil samples, lower coumaphos residues in honey might be associated with persistent pollution in the surrounding environment. Conversely, neonicotinoids were detected at higher levels in honey than in the pollen and soil, demonstrating that the neonicotinoid residues in honey have a cumulative effect. This study contributes to a better understanding of the pesticide contamination scenarios that underlie the exposure risks of bees.


Assuntos
Acaricidas , Inseticidas , Praguicidas , Abelhas , Animais , Acaricidas/toxicidade , Neonicotinoides , Cumafos , Solo , Inseticidas/análise
4.
Gut Microbes ; 16(1): 2316923, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38400721

RESUMO

S-amlodipine, a commonly prescribed antihypertensive agent, is widely used in clinical settings to treat hypertension. However, the potential adverse effects of long-term S-amlodipine treatment on the liver remain uncertain, given the cautionary recommendations from clinicians regarding its administration in individuals with impaired liver function. To address this, we conducted a study using an eight-week-old male rat model and administered a daily dose of 0.6 ~ 5 mg/kg of S-amlodipine for 7 weeks. Our findings demonstrated that 1.2 ~ 5 mg/kg of S-amlodipine treatment induced liver inflammation and associated dysfunction in rats, further in vitro experiments revealed that the observed liver inflammation and dysfunction were not attributable to direct effects of S-amlodipine on the liver. Metagenome sequencing analysis revealed that S-amlodipine treatment led to alterations in the gut microbiome of rats, with the bloom of E. coli (4.5 ~ 6.6-fold increase) and a decrease in A. muciniphila (1,613.4 ~ 2,000-fold decrease) and B. uniformis (20.6 ~ 202.7-fold decrease), subsequently causing an increase in the gut bacterial lipopolysaccharide (LPS) content (1.4 ~ 1.5-fold increase in feces). S-amlodipine treatment also induced damage to the intestinal barrier and increased intestinal permeability, as confirmed by elevated levels of fecal albumin; furthermore, the flux of gut bacterial LPS into the bloodstream through the portal vein resulted in an increase in serum LPS content (3.3 ~ 4-fold increase). LPS induces liver inflammation and subsequent dysfunction in rats by activating the TLR4 pathway. This study is the first to show that S-amlodipine induces liver inflammation and dysfunction by perturbing the rat gut microbiome. These results indicate the adverse effects of S-amlodipine on the liver and provide a rich understanding of the safety of long-term S-amlodipine administration.


Assuntos
Anlodipino , Microbioma Gastrointestinal , Ratos , Masculino , Animais , Anlodipino/efeitos adversos , Lipopolissacarídeos , Escherichia coli , Fígado , Bactérias , Inflamação
5.
Sci Total Environ ; 918: 170674, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38316309

RESUMO

Human bocavirus (HBoV) is an emerging health concern worldwide, associated with range of clinical manifestations, including gastroenteritis and respiratory infections. Therefore, it is crucial to comprehend and minimize their prevalence in different systems. In this study, we conducted regular sampling throughout the year in two different sizes and work processes of wastewater treatment plants (WWTPs) in Tianjin, China. Our objective was to investigate the occurrence, prevalence, and endurance of HBoV in wastewater, while also evaluating the efficacy of amplicon target sequencing in directly detecting HBoV in wastewater. At two WWTPs, HBoV2 (45.51 %-45.67 %) and HBoV3 (38.30 %-40.25 %) were the most common genotypes identified, and the mean concentration range of HBoV was 2.54-7.40 log10 equivalent copies/l as determined by multiplex real-time quantitative PCR assay. A positive rate of HBoV was found in 96.6 % (29/30) samples of A-WWTP, and 96.6 % (26/27) samples of B-WWTP. The phylogenetic analysis indicated that the nucleotide similarity between the HBoV DNA sequences to the reference HBoV sequences published globally ranged from 90.14 %-100 %. A significant variation in the read abundance of HBoV2 and HBoV3 in two wastewater treatment plants (p < 0.05) was detected, specifically in the Winter and Summer seasons. The findings revealed a strong correlation between the genotypes detected in wastewater and the clinical data across various regions in China. In addition, it is worth mentioning that HBoV4 was exclusively detected in wastewater and not found in the clinical samples from patients. This study highlights the high prevalence of human bocavirus in municipal wastewater. This finding illustrates that amplicon target sequencing can amplify a wide variety of viruses, enabling the identification of newly discovered viruses.


Assuntos
Bocavirus Humano , Infecções por Parvoviridae , Humanos , Lactente , Bocavirus Humano/genética , Águas Residuárias , Filogenia , Infecções por Parvoviridae/epidemiologia , Fezes
6.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366209

RESUMO

Antimicrobial resistance is a major threat for public health. Plasmids play a critical role in the spread of antimicrobial resistance via horizontal gene transfer between bacterial species. However, it remains unclear how plasmids originally recruit and assemble various antibiotic resistance genes (ARGs). Here, we track ARG recruitment and assembly in clinically relevant plasmids by combining a systematic analysis of 2420 complete plasmid genomes and experimental validation. Results showed that ARG transfer across plasmids is prevalent, and 87% ARGs were observed to potentially transfer among various plasmids among 8229 plasmid-borne ARGs. Interestingly, recruitment and assembly of ARGs occur mostly among compatible plasmids within the same bacterial cell, with over 88% of ARG transfers occurring between compatible plasmids. Integron and insertion sequences drive the ongoing ARG acquisition by plasmids, especially in which IS26 facilitates 63.1% of ARG transfer events among plasmids. In vitro experiment validated the important role of IS26 involved in transferring gentamicin resistance gene aacC1 between compatible plasmids. Network analysis showed four beta-lactam genes (blaTEM-1, blaNDM-4, blaKPC-2, and blaSHV-1) shuffling among 1029 plasmids and 45 clinical pathogens, suggesting that clinically alarming ARGs transferred accelerate the propagation of antibiotic resistance in clinical pathogens. ARGs in plasmids are also able to transmit across clinical and environmental boundaries, in terms of the high-sequence similarities of plasmid-borne ARGs between clinical and environmental plasmids. This study demonstrated that inter-plasmid ARG transfer is a universal mechanism for plasmid to recruit various ARGs, thus advancing our understanding of the emergence of multidrug-resistant plasmids.


Assuntos
Antibacterianos , Bactérias , Antibacterianos/farmacologia , Plasmídeos/genética , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Genes Bacterianos , Transferência Genética Horizontal , Farmacorresistência Bacteriana/genética
7.
J Clin Periodontol ; 50(9): 1253-1263, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37381658

RESUMO

AIM: Porphyromonas gingivalis (P. gingivalis), a major periodontal pathogen, increases the risk of systemic diseases. P. gingivalis infection is closely associated with alcoholic liver disease (ALD), but the underlying mechanism remains unclear. We aimed to investigate the role of P. gingivalis in the pathogenesis of ALD. MATERIALS AND METHODS: An ALD mouse model was established using a Lieber-DeCarli liquid diet, and C57BL/6 mice were treated with P. gingivalis to detect the pathological indicators of ALD. RESULTS: Oral administration of P. gingivalis exacerbated alcohol-induced alterations in the gut microbiota, leading to gut barrier dysfunction and inflammatory response and disruption of the T-helper 17 cell/T-regulatory cell ratio in the colon of ALD mice. Furthermore, P. gingivalis worsened liver inflammation in ALD mice by increasing the protein expression of toll-like receptor 4 (TLR4) and p65, increasing the mRNA expression of interleukins-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) and up-regulating the transforming growth factor-beta 1 (TGF-ß1) and galectin-3 (Gal-3) production. CONCLUSIONS: These results indicate that P. gingivalis accelerates the pathogenesis of ALD via the oral-gut-liver axis, necessitating a new treatment strategy for patients with ALD complicated by periodontitis.


Assuntos
Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Animais , Camundongos , Porphyromonas gingivalis , Microbioma Gastrointestinal/genética , Camundongos Endogâmicos C57BL , Imunidade
8.
Microbiol Spectr ; : e0447822, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36946731

RESUMO

Antibiotic resistance is propagating worldwide, but the predominant dissemination mechanisms are not fully understood. Here, we report that antibiotic resistance gene (ARG) abundance in conjugative plasmids that are recorded in the National Center for Biotechnology Information (NCBI) RefSeq plasmid database is increasing globally, which is likely a key factor in the propagation of resistance. ARG abundance in plasmids increased by 10-fold on a global scale from the year 2000 to the year 2020 (from 0.25 to 2.93 ARG copies/plasmid), with a more pronounced increase being observed in low-to-middle income countries. This increasing trend of plasmid-borne ARGs was corroborated by bootstrap resampling from each year of the NCBI RefSeq plasmid database. The results of a correlation analysis imply that if antibiotic consumption keeps growing at the current rates, a 2.7-fold global increase in the ARG abundance of clinically relevant plasmids may be reached by 2030. High sequence similarities of clinically relevant, conjugative plasmids that are isolated both from clinics and from the environment raise concerns about the environmental resistome serving as a potential ARG maintenance reservoir that facilitates transmission across these ecological boundaries. IMPORTANCE Antibiotic resistance propagation is a significant concern due to its projected impacts on both global health and the economy. However, global propagation mechanisms are not fully understood, including regional and temporal trends in the abundance of resistance plasmids that facilitate antibiotic resistance gene (ARG) dissemination. This unprecedented study reports that ARG abundance in the conjugative plasmids that are recorded in the National Center for Biotechnology Information (NCBI) database and harbor ARGs is increasing globally with antibiotic consumption, especially in low-to-medium income countries. Through network and comparative genomic analyses, we also found high sequence similarities of clinically relevant conjugative resistance plasmids that were isolated from clinical and environmental sources, suggesting transmission between these ecological boundaries. Therefore, this study informs the One Health perspective to develop effective strategies by which to curtail the propagation of plasmid-borne antibiotic resistance.

9.
J Hazard Mater ; 442: 130005, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36179618

RESUMO

Discharged wastewater treatment plant (WWTP) effluents can contaminate receiving water bodies with human feces and alter the abundance of antibiotic resistance genes (ARGs). In this study, we examined the co-occurrence of ARGs, human fecal pollution indicator crAssphage, and antibiotics in human feces and a series of connected receiving water bodies affected by human feces, including water from different treatment units of a WWTP, river, lake, and tap waters. Results showed that crAssphage was detected in 68.2 % of the studied water bodies, confirming widespread human fecal contamination. Both ARG and crAssphage abundances exhibited a distance-decay effect from the emission source to the receiving environment. Interestingly, the detected ARG abundance in the water bodies was significantly correlated with crAssphage abundance but not with the residual antibiotic concentration, demonstrating that the presence of ARG could largely be explained by the extent of fecal pollution, with no clear signs of antibiotic selection. In addition, 14 ARGs co-shared by human feces and water bodies were significantly correlated with crAssphage. Furthermore, a close evolutionary relationship was observed between the blaTEM-1 gene from human feces and aquatic environments. These results imply a potential ARG exchange between human feces and receiving water bodies. Overall, this study provides important insights into the distribution and sources of ARGs in water bodies affected by human fecal contamination.


Assuntos
Antibacterianos , Poluição da Água , Humanos , Resistência Microbiana a Medicamentos/genética , Fezes , Poluição da Água/análise , Antibacterianos/farmacologia , Água , Águas Residuárias , Genes Bacterianos
10.
J Hazard Mater ; 442: 130042, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36182890

RESUMO

The emergence of antimicrobial resistance (AMR) is a growing public health threat worldwide and antibiotic consumption is being increasingly recognized as the main selective pressure driving this resistance. However, global trend in antibiotic resistance in response to antibiotic consumption is not fully understood. In this study, we collected national resistance data on specific resistant pathogens considered by the World Health Organization (WHO) as priority and antibiotic consumption data for 61 countries to assess the global trends in antibiotic resistance of those common bacterial pathogens and their association with antibiotic consumption. The low- and middle-income countries (LMICs) represented the largest hotspots of resistance, which presented relatively higher resistance rates in common bacterial pathogens but lower antibiotic consumption rates compared to high-income countries (HICs). Specifically, we developed the Normalized Antibiotic Resistance/Consumption Index (NARCI) and produced global maps of NARCI to roughly assess the appropriateness of antibiotic consumption across countries and to indicate the potentially inappropriate antibiotic consumption in LMICs compared with HICs. Additionally, we linked antibiotic consumption rates and resistance rates of target pathogens, in conjunction with NARCI and the correlation analysis between antibiotic use and resistance, to inform strategies to alleviate the threat of antibiotic resistance worldwide.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Antibacterianos/uso terapêutico , Bactérias , Renda
11.
Microbiol Spectr ; 10(6): e0351122, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36445133

RESUMO

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen, the leading cause of acute and chronic infections in immunocompromised patients, frequently with high morbidity and mortality rates. The xenobiotic response element (XRE) family proteins are the second most common transcriptional regulators (TRs) in P. aeruginosa. However, only a few XRE-like TRs have been reported to regulate multiple bacterial cellular processes, encompassing virulence, metabolism, antibiotic synthesis or resistance, stress responses, and phage infection, etc. Our understanding of what roles these XRE-like small regulatory proteins play in P. aeruginosa remains limited. Here, we aimed to decipher the role of a putative XRE-type transcriptional regulator (designated LfsT) from a prophage region on the chromosome of a clinical P. aeruginosa isolate, P8W. Southern blot and reverse transcription quantitative PCR (RT-qPCR) assays demonstrated that LfsT controlled host sensitivity to the phage PP9W2 and was essential for efficient phage replication. In addition, electrophoretic mobility shift assays (EMSAs) and transcriptional lacZ fusion analyses indicated that LfsT repressed the lysogenic development and promoted the lytic cycle of phage PP9W2 by binding to the promoter regions of the gp71 gene (encoding a CI-like repressor) and several vital phage genes. Combined with RNA-seq and a series of phenotypic validation tests, our results showed that LfsT bound to the flexible palindromic sites within the promoters upstream of several genes in the bacterial genome, regulating fatty acid (FA) metabolism, spermidine (SPD) transport, as well as the type III secretion system (T3SS). Overall, this study reveals novel regulatory roles of LfsT in P. aeruginosa, improving our understanding of the molecular mechanisms behind bacterium-phage interactions. IMPORTANCE This work elucidates the novel roles of a putative XRE family TR, LfsT, in the intricate regulatory systems of P. aeruginosa. We found that LfsT bound directly to the core promoter regions upstream of the start codons of numerous genes involved in various processes, including phage infection, FA metabolism, SPD transport, and the T3SS, regulating as the repressor or activator. The identified partial palindromic motif NAACN(5,8)GTTN recognized by LfsT suggests extensive effects of LfsT on gene expression by maintaining preferential binding to nucleotide sites under evolutionary pressure. In summary, these findings indicate that LfsT enhances metabolic activity in P. aeruginosa, while it reduces host resistance to the phage. This study helps us better understand the coevolution of bacteria and phages (e.g., survival comes at a cost) and provides clues for designing novel antimicrobials against P. aeruginosa infections.


Assuntos
Pseudomonas aeruginosa , Xenobióticos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Prófagos/genética , Elementos de Resposta , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xenobióticos/metabolismo , Xenobióticos/farmacologia
12.
Appl Environ Microbiol ; 88(18): e0106822, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36073944

RESUMO

Pseudomonas aeruginosa is a notorious pathogen that causes various nosocomial infections. Several prophage genes located on the chromosomes of P. aeruginosa have been reported to contribute to bacterial pathogenesis via host phenotype transformations, such as serotype conversion and antibiotic resistance. However, our understanding of the molecular mechanism behind host phenotype shifts induced by prophage genes remains largely unknown. Here, we report a systematic study around a hypothetical recombinase, Pg54 (RecT), located on a 48-kb putative prophage (designated PP9W) of a clinical P. aeruginosa strain P9W. Using a ΔrecT mutant (designated P9D), we found that RecT promoted prophage PP9W excision and gene transcription via the inhibition of the gene expression level of pg40, which encodes a CI-like repressor protein. Further transcriptomic profiling and various phenotypic tests showed that RecT modulated like a suppressor to some transcription factors and vital genes of diverse cellular processes, providing multiple advantages for the host, including cell growth, biofilm formation, and virulence. The versatile functions of RecT hint at a strong impact of phage proteins on host P. aeruginosa phenotypic flexibility. IMPORTANCE Multidrug-resistant and metabolically versatile P. aeruginosa are difficult to eradicate by anti-infective therapy and frequently lead to significant morbidity and mortality. This study characterizes a putative recombinase (RecT) encoded by a prophage of a clinical P. aeruginosa strain isolated from severely burned patients, altering prophage lifestyle and host core cellular processes. It implies the potential role of RecT in the coevolution arm race between bacteria and phage. The excised free phages from the chromosome of host bacteria can be used as weapons against other sensitive competitors in diverse environments, which may increase the lysogeny frequency of different P. aeruginosa subgroups. Subsequent analyses revealed that RecT both positively and negatively affects different phenotypic traits of the host. These findings concerning RecT functions of host phenotypic flexibility improve our understanding of the association between phage recombinases and clinical P. aeruginosa, providing new insight into mitigating the pathogen infection.


Assuntos
Bacteriófagos , Prófagos , Bacteriófagos/genética , Prófagos/fisiologia , Pseudomonas aeruginosa/genética , Recombinases/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo
13.
J Hazard Mater ; 421: 126707, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34315018

RESUMO

Triclosan (TCS) is an antimicrobial ingredient that has been widely incorporated in consumer products. TCS can cause hepatic damage by disturbing lipid metabolism, which is often accompanied with gut microbiota dysbiosis. However, the effects of gut microbiota on the TCS-induced liver injury are still unknown. Therefore, we constructed a mouse model based on five-week-old male C57BL/6 mice to investigate the effects of dietary TCS exposure (40 ppm) on liver injury. We found that TCS treatment for 4 weeks dramatically disturbed gut microbiota homeostasis, resulting in overproduction of lipopolysaccharides (LPS) and deficiency of secondary bile acids such as deoxycholic acid (DCA) and lithocholic acid (LCA). In addition, TCS considerably increased intestinal permeability by reducing mucus excretion and expression of tight junction proteins (ZO-1, occludin and claudin 4), which facilitated translocation of LPS. The LPS accumulation in blood contributed to liver injury by triggering the inflammatory response via TLR4 pathway. In summary, this study provides novel insights into the underlying mechanisms of TCS-associated liver injury induced by gut microbiota via the gut-liver axis, and contributes to better interpretation of the health impact of the environmentally emerging contaminant TCS.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Triclosan , Animais , Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Triclosan/toxicidade
14.
J Antimicrob Chemother ; 77(2): 391-399, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34747464

RESUMO

OBJECTIVES: The msr(E)-mph(E) operon exists widely in diverse species of bacteria and msr(E) and mph(E) genes confer high resistance to macrolides. We aimed to explore whether macrolides regulate the transcription of the operon. METHODS: Antibiotic resistance genes in clinical isolates of Klebsiella pneumoniae were analysed by WGS. The transcription of the msr(E)-mph(E) operon was investigated by quantitative PCR. Construction of enhanced green fluorescent protein (eGFP) reporter plasmids, gene knockout and complementation experiments were used to further explore the induction mechanism of macrolides for the operon. Sequence analysis was finally used to investigate whether the operon exists widely in diverse species of bacteria. RESULTS: We originally found that the treatment of a pandrug-resistant isolate of K. pneumoniae (KP1517) with macrolides obviously up-regulated the msr(E)-mph(E) operon, which was further confirmed in another nine clinical isolates of K. pneumoniae. The induction mechanism of macrolides for the operon was partly elucidated. Macrolides could activate the operon promoter, and the J10/J35 regions (J10: 5'-AGTTATCAT-3'; J35: 5'-TTGTCT-3') of the promoter were determined. Histone-like nucleoid-structuring protein (HNS) and cAMP receptor protein (CRP) were involved in the erythromycin-mediated activation of the operon promoter. The 476 strains of bacteria carrying the msr(E)-mph(E) operon currently in the NCBI database are mainly Acinetobacter baumannii (158; 33%), K. pneumoniae (95; 20%), Escherichia coli (26; 5%) and Proteus mirabilis (25; 5%). They were mainly isolated from human clinical samples (287; 60%) and had a wide geographical distribution. CONCLUSIONS: Macrolides could activate transcription of the msr(E)-mph(E) operon through HNS and CRP in K. pneumoniae and E. coli, and this might occur in diverse species of bacteria.


Assuntos
Proteínas de Bactérias , Proteína Receptora de AMP Cíclico , Macrolídeos , Óperon , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , Proteínas de Ligação a DNA , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Proteínas de Escherichia coli , Histonas/genética , Histonas/metabolismo , Humanos , Klebsiella pneumoniae/genética , Macrolídeos/farmacologia , Ativação Transcricional
15.
ISME J ; 16(5): 1284-1293, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34903849

RESUMO

Multidrug-resistant plasmid-carrying bacteria are of particular clinical concern as they could transfer antibiotic resistance genes to other bacterial species. However, little is known whether evolutionary adaptation of plasmid-carrying bacteria after long-term antibiotic exposure could affect their subsequent colonization of the human gut. Herein, we combined a long-term evolutionary model based on Escherichia coli K-12 MG1655 and the multidrug-resistant plasmid RP4 with in vivo colonization experiments in mice. We found that the evolutionary adaptation of plasmid-carrying bacteria to antibiotic exposure facilitated colonization of the murine gut and subsequent plasmid transfer to gut bacteria. The evolved plasmid-carrying bacteria exhibited phenotypic alterations, including multidrug resistance, enhanced bacterial growth and biofilm formation capability and decreased plasmid fitness cost, which might be jointly caused by chromosomal mutations (SNPs in rpoC, proQ, and hcaT) and transcriptional modifications. The upregulated transcriptional genes, e.g., type 1 fimbrial-protein pilus (fimA and fimH) and the surface adhesin gene (flu) were likely responsible for the enhanced biofilm-forming capacity. The gene tnaA that encodes a tryptophanase-catalyzing indole formation was transcriptionally upregulated, and increased indole products participated in facilitating the maximum population density of the evolved strains. Furthermore, several chromosomal genes encoding efflux pumps (acriflavine resistance proteins A and B (acrA, acrB), outer-membrane protein (tolC), multidrug-resistance protein (mdtM), and macrolide export proteins A and B (macA, macB)) were transcriptionally upregulated, while most plasmid-harboring genes (conjugal transfer protein (traF) and (trbB), replication protein gene (trfA), beta-lactamase TEM precursor (blaTEM), aminoglycoside 3'-phosphotransferase (aphA) and tetracycline resistance protein A (tetA)) were downregulated. Collectively, these findings demonstrated that evolutionary adaptation of plasmid-carrying bacteria in an antibiotic-influenced environment facilitated colonization of the murine gut by the bacteria and plasmids.


Assuntos
Escherichia coli K12 , Proteínas de Escherichia coli , Microbioma Gastrointestinal , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Escherichia coli/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Indóis , Camundongos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmídeos/genética , Proteínas de Ligação a RNA/genética
16.
J Hazard Mater ; 423(Pt B): 127220, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34844350

RESUMO

The development of antimicrobial resistance (AMR) is accelerated by the selective pressure exerted by the widespread use of antimicrobial drugs, posing an increasing danger to public health. However, long-term spatiotemporal variation in AMR genes in microorganisms, particularly in bacterial pathogens in response to antibiotic consumption, is not fully understood. Here, we used the NCBI RefSeq database to collect 478 whole-genome sequences for Serratia marcescens ranging from 1961 up to 2019, to document global long-term AMR trends in S. marcescens populations. In total, 100 AMR gene subtypes (16 AMR gene types) were detected in the genomes of S. marcescens populations. We identified 3 core resistance genes in S. marcescens genomes, and a high diversity of AMR genes was observed in S. marcescens genomes after corresponding antibiotics were discovered and introduced into clinical practice, suggesting the adaptation of S. marcescens populations to challenges with therapeutic antibiotics. Our findings indicate spatiotemporal variation of AMR genes in S. marcescens populations in relation to antibiotic consumption and suggest the potential transmission of S. marcescens isolates harboring AMR genes among countries and between the environment and the clinic, representing a public health threat that necessitates international solidarity to overcome.


Assuntos
Antibacterianos , Serratia marcescens , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Serratia marcescens/genética
17.
Environ Sci Technol ; 55(15): 10462-10470, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34114802

RESUMO

Applications of animal manure and treated wastewater could enrich antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the plant microbiome. However, the mechanistic studies of the transmission of ARB and ARGs from the environment to plant endophytic bacteria were few. Herein, a genetically engineered fluorescent Escherichia coli harboring a conjugative RP4 plasmid that carries three ARGs was used to trace its spread into Arabidopsis thaliana interior in a tetracycline-amended hydroponic system in the absence or presence of a simulated soil bacterial community. Confocal microscope observation demonstrated that E. coli was internalized into plant tissues and the carried RP4 plasmid was transferred into plant endophytic bacteria. More importantly, we observed that soil bacteria inhibited the internalization of E. coli but substantially promoted RP4 plasmid spread into the plant microbiome. The altered RP4-carrying bacterial community composition in the plant microbiome and the increased core-shared RP4-carrying bacteria number between plant interior and exterior in the presence of soil bacteria collectively confirmed that soil bacteria, especially Proteobacteria, might capture RP4 from E. coli and then translocate into plant microbiome, resulting in the increased RP4 plasmid spread in the plant endophytes. Overall, our findings provided important insights into the dissemination of ARB and ARGs from the environment to the plant microbiome.


Assuntos
Escherichia coli , Solo , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Animais , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos , Escherichia coli/genética , Genes Bacterianos , Plasmídeos/genética
18.
Sci Total Environ ; 750: 141415, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32846251

RESUMO

Antibiotics treatment could cause the dysbiosis of human intestinal microbiota and antibiotic resistome. Fecal microbiota transplantation (FMT) has been an efficacious treatment to restore the dysbiosis of intestinal microbiota in a variety of intestinal diseases. However, to data, the effect of the combinatorial antibiotic treatment on microbiota, antibiotic resistome and the FMT for restoration affected by combinatorial antibiotic exposure in the human intestinal microbiota remain unclear. In this study, we systematically investigated the effect of the colistin and amoxicillin combinatorial exposure in the simulator of the human intestinal microbial ecosystem (SHIME) and found that this combinatorial exposure significantly altered (p < 0.05) the human intestinal microbiota and antibiotic resistome. The shift of bacterial community and antibiotic resistome could incompletely recovery to baseline by FMT treatment after combinatorial antibiotic exposure. Additionally, the variance of antibiotic resistome was dominantly driven by the bacterial community (41.18%-68.03%) after the combinatorial antibiotic exposure. Overall, this study first to investigate the influence of the colistin and amoxicillin combinatorial exposure on the intestinal microbiota and antibiotic resistome, and assess the FMT recovery in the simulated human intestinal microbiota, which may potentially provide a correct administration of antibiotics and application of FMT in the clinic.


Assuntos
Colistina , Microbioma Gastrointestinal , Amoxicilina , Antibacterianos , Disbiose , Humanos
19.
Environ Pollut ; 268(Pt B): 115362, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33035873

RESUMO

The emergence of clinically relevant ß-lactam-resistant bacteria poses a serious threat to human health and presents a major challenge for medical treatment. How opportunistic pathogenic bacteria acquire antibiotic resistance and the prevalence of antibiotic-resistant opportunistic pathogenic bacteria in the environment are still unclear. In this study, we further confirmed that the selective pressure of heavy metals contributes to the increase in ampicillin-resistant opportunistic pathogens in the Xiangjiang River. Four ampicillin-resistant opportunistic pathogenic bacteria (Pseudomonas monteilii, Aeromonas hydrophila, Acinetobacter baumannii, and Staphylococcus epidermidis) were isolated on Luria-Bertani (LB) agar plates and identified by 16S rRNA sequencing. The abundance of these opportunistic pathogenic bacteria significantly increased in the sites downstream of the Xiangjiang River that were heavily influenced by metal mining activities. A microcosm experiment showed that the abundance of ß-lactam resistance genes carried by opportunistic pathogenic bacteria in the heavy metal (Cu2+ and Zn2+) treatment group was 2-10 times higher than that in the control. Moreover, heavy metals (Cu2+ and Zn2+) significantly increased the horizontal transfer of plasmids in pathogenic bacteria. Of particular interest is that heavy metals facilitated the horizontal transfer of conjugative plasmids, which may lead to the prevalence of multidrug-resistant pathogenic bacteria in the Xiangjiang River.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Ampicilina , Bactérias/genética , China , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Prevalência , Pseudomonas , RNA Ribossômico 16S , Poluentes Químicos da Água/análise
20.
Environ Pollut ; 268(Pt B): 115620, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120141

RESUMO

Inhalation of airborne antibiotic resistance genes (ARGs) can lead to antimicrobial resistance and potential health risk. In modern society, increasing individuals stay more indoors, however, studies regarding the exposure to airborne ARGs in indoor environments and the associated risks remain limited. Here, we compared the variance of aerosol-associated ARGs, bacterial microbiomes, and their daily intake (DI) burden in dormitory, office, and outdoor environments in a university in Tianjin. The results indicated that compared to outdoor aerosols, indoors exhibited significantly higher absolute abundance of both ARG subtypes and mobile genetic elements (MGEs) (1-7 orders of magnitude), 16S rRNA genes (2-3 orders), and total culturable bacteria (1-3 orders). Furthermore, we observed that significantly different airborne bacterial communities are the major drivers contributing to the variance of aerosol-associated ARGs in indoor and outdoor aerosols. Notably, the high abundances of total bacteria, potential pathogenic genera, and ARGs (particularly those harbored by pathogens) in indoor and outdoor aerosols, especially in indoors, may pose an increased exposure risk via inhalation. The successful isolation of human pathogens such as Elizabethkingia anopheles, Klebsiella pneumonia, and Delftia lacustris resistant to the "last-resort" antibiotics carbapenems and polymyxin B from indoor aerosols further indicated an increased exposure risk in indoors. Together, this study highlights the potential risks associated with ARGs and their inhalation to human health in indoor environments.


Assuntos
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacologia , Delftia , Resistência Microbiana a Medicamentos , Humanos , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA