Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13258, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858422

RESUMO

Lung cancer is the most common oncological disease worldwide, with non-small cell lung cancer accounting for approximately 85% of lung cancer cases. α-Hederin is a monodesmosidic triterpenoid saponin isolated from the leaves of Hedera helix L. or Nigella sativa and has been extensively studied for its antitumor activity against a variety of tumor cells. It has been suggested that α-Hederin is a potential regulator of autophagy and has high promise for application. However, the specific mechanism and characteristics of α-Hederin in regulating autophagy are not well understood. In this study, we confirmed the potential of α-Hederin application in lung cancer treatment and comprehensively explored the mechanism and characteristics of α-Hederin in regulating autophagy in lung cancer cells. Our results suggest that α-Hederin is an incomplete autophagy inducer that targets mTOR to activate the classical autophagic pathway, inhibits lysosomal acidification without significantly affecting the processes of autophagosome transport, lysosome biogenesis, autophagosome and lysosome fusion, and finally leads to impaired autophagic flux and triggers autophagic damage in NSCLC.


Assuntos
Autofagia , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Lisossomos , Ácido Oleanólico , Saponinas , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Saponinas/farmacologia , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Autofagossomos/metabolismo , Autofagossomos/efeitos dos fármacos , Células A549
2.
Eur J Med Res ; 28(1): 547, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017514

RESUMO

BACKGROUND: Triptonodiol is a very promising antitumor drug candidate extracted from the Chinese herbal remedy Tripterygium wilfordii Hook. F., and related studies are underway. METHODS: To explore the mechanism of triptonodiol for lung cancer treatment, we used network pharmacology, molecular docking, and ultimately protein validation. Gene ontology (GO) analysis and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analysis were performed through the David database. Molecular docking was performed using PyMoL2.3.0 and AutoDock Vina software. After screening, the major targets of triptonodiol were identified for the treatment of lung cancer. Target networks were established, Protein-protein interaction (PPI) network topology was analyzed, then KEGG pathway enrichment analysis was performed. Useful proteins were screened by survival analysis, and Western blot analysis was performed. RESULTS: Triptonodiol may regulate cell proliferation, drug resistance, metastasis, anti-apoptosis, etc., by acting on glycogen synthase kinase 3 beta (GSK3B), protein kinase C (PKC), p21-activated kinase (PAK), and other processes. KEGG pathway enrichment analysis showed that these targets were associated with tumor, erythroblastic oncogene B (ErbB) signaling, protein phosphorylation, kinase activity, etc. Molecular docking showed that the target protein GSK has good binding activity to the main active component of triptonodiol. The protein abundance of GSK3B was significantly downregulated in non-small-cell lung cancer cells H1299 and A549 treated with triptonodiol for 24 h. CONCLUSION: The cellular-level studies combined with network pharmacology and molecular docking approaches provide new ideas for the development and therapeutic application of triptonodiol, and identify it as a potential GSK inhibitor.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , Farmacologia em Rede , Tripterygium/química , Medicamentos de Ervas Chinesas/farmacologia
3.
Molecules ; 28(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37375263

RESUMO

Lung cancer is the most prevalent oncological disease worldwide, with non-small-cell lung cancer accounting for approximately 85% of lung cancer cases. Tripterygium wilfordii is a traditional Chinese herb that is widely used to treat rheumatism, pain, inflammation, tumors, and other diseases. In this study, we found that Triptonodiol extracted from Tripterygium wilfordii inhibited the migration and invasion of non-small-cell lung cancer and inhibited cytoskeletal remodeling, which has not been previously reported. Triptonodiol significantly inhibited the motility activity of NSCLC at low toxic concentrations and suppressed the migration and invasion of NSCLC. These results can be confirmed by wound healing, cell trajectory tracking, and Transwell assays. We found that cytoskeletal remodeling was inhibited in Triptonodiol-treated NSCLC, as evidenced by the reduced aggregation of actin and altered pseudopod morphology. Additionally, this study found that Triptonodiol induced an increase in complete autophagic flux in NSCLC. This study suggests that Triptonodiol reduces the aggressive phenotype of NSCLC by inhibiting cytoskeletal remodeling and is a promising anti-tumor compound.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Diterpenos , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Tripterygium , Movimento Celular , Processos Neoplásicos , Diterpenos/farmacologia , Linhagem Celular Tumoral
4.
Phytomedicine ; 114: 154761, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37028249

RESUMO

BACKGROUND: Celastrus orbiculatus Thunb. is a medicinal plant that has been widely used for thousands of years in China, and the ethyl acetate extract (Celastrus orbiculatus Thunb. Extract, COE) from its stem was reported to exert antitumor and anti-inflammatory effects in various preclinical studies. However, the anti-non-small-cell lung cancer activity of COE and its potential mechanism are not yet fully understood. PURPOSE: To investigate the antitumor effects of COE on non-small-cell lung cancer (NSCLC) cells and explore its molecular mechanism from the perspective of Hippo signaling, YAP nuclear translocation, and reactive oxygen species (ROS) generation. METHODS: The effects of COE on proliferation, cell cycle arrest, apoptosis, stemness, and senescence in NSCLC cell lines were determined by CCK-8, clone formation, flow cytometry, and ß-galactosidase staining assays. The effects of COE on Hippo signaling were investigated by Western blotting. The intracellular expression and distribution of YAP were analyzed by immunofluorescence assay. DCFH-DA probe combined with flow cytometry was used to detect intracellular total ROS levels in NSCLC cells after COE treatment. Xenograft tumor model was established, and the animal living image system was employed to analyze the effects of COE on the Hippo-YAP signaling in vivo. RESULT: COE significantly inhibited NSCLC activity in vitro and in vivo, mainly by proliferation inhibition, cycle arrest, apoptosis promotion, senescence promotion, and stemness downregulation. COE strongly activated Hippo signaling and inhibited YAP expression and nuclear retention. Activation of Hippo signaling induced by COE was associated with ROS-mediated phosphorylation of MOB1. CONCLUSION: This study demonstrated that COE inhibited NSCLC through activating Hippo signaling and suppressing YAP nuclear translocation, in which ROS may play a role in the phosphorylation of the MOB1 protein.


Assuntos
Celastrus , Neoplasias Pulmonares , Animais , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Via de Sinalização Hippo , Neoplasias Pulmonares/tratamento farmacológico , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio , Proteínas de Sinalização YAP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA