Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
1.
PLoS Negl Trop Dis ; 18(6): e0012229, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38857253

RESUMO

Leishmania donovani surface glycoprotein 63 (GP63) is a major virulence factor involved in parasite escape and immune evasion. In this study, we generated virus-like particles (VLPs) expressing L. donovani GP63 using the baculovirus expression system. Mice were intramuscularly immunized with GP63-VLPs and challenged with L. donovani promastigotes. GP63-VLP immunization elicited higher levels of L. donovani antigen-specific serum antibodies and enhanced splenic B cell, germinal center B cell, CD4+, and CD8+ T cell responses compared to unimmunized controls. GP63-VLPs inhibited the influx of pro-inflammatory cytokines IFN-γ and IL-6 in the livers, as well as thwarting the development of splenomegaly in immunized mice. Upon L. donovani challenge infection, a drastic reduction in splenic parasite burden was observed in VLP-immunized mice. These results indicate that GP63-VLPs immunization conferred protection against L. donovani challenge infection by inducing humoral and cellular immunity in mice.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Camundongos Endogâmicos BALB C , Vacinas de Partículas Semelhantes a Vírus , Animais , Leishmania donovani/imunologia , Camundongos , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Feminino , Leishmaniose Visceral/prevenção & controle , Leishmaniose Visceral/imunologia , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Vacinas contra Leishmaniose/imunologia , Vacinas contra Leishmaniose/administração & dosagem , Eficácia de Vacinas , Imunidade Celular , Baço/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos B/imunologia , Imunidade Humoral , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/genética , Citocinas/imunologia , Metaloendopeptidases
2.
Cell ; 187(13): 3357-3372.e19, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38866018

RESUMO

Microbial hydrogen (H2) cycling underpins the diversity and functionality of diverse anoxic ecosystems. Among the three evolutionarily distinct hydrogenase superfamilies responsible, [FeFe] hydrogenases were thought to be restricted to bacteria and eukaryotes. Here, we show that anaerobic archaea encode diverse, active, and ancient lineages of [FeFe] hydrogenases through combining analysis of existing and new genomes with extensive biochemical experiments. [FeFe] hydrogenases are encoded by genomes of nine archaeal phyla and expressed by H2-producing Asgard archaeon cultures. We report an ultraminimal hydrogenase in DPANN archaea that binds the catalytic H-cluster and produces H2. Moreover, we identify and characterize remarkable hybrid complexes formed through the fusion of [FeFe] and [NiFe] hydrogenases in ten other archaeal orders. Phylogenetic analysis and structural modeling suggest a deep evolutionary history of hybrid hydrogenases. These findings reveal new metabolic adaptations of archaea, streamlined H2 catalysts for biotechnological development, and a surprisingly intertwined evolutionary history between the two major H2-metabolizing enzymes.


Assuntos
Archaea , Hidrogênio , Hidrogenase , Filogenia , Hidrogenase/metabolismo , Hidrogenase/genética , Hidrogenase/química , Hidrogênio/metabolismo , Archaea/genética , Archaea/enzimologia , Modelos Moleculares , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/química , Genoma Arqueal , Proteínas Arqueais/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética
4.
Adv Sci (Weinh) ; : e2403098, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898726

RESUMO

Wearing face masks is the best way to stop the spread of respiratory infections. However, if masks are not sterilized, changing them too frequently can actually increase the risk of cross-contamination. Herein, the construction of an antipathogen photocatalytic mask with carbon vacancy-modified carbon nitride nanosheets (g-C3N4-VC Ns) coated on the non-woven fabrics of the out layer of the mask, offering effective and long-term protection against damaging pathogens when exposed to light is reported. The introduced carbon vacancies are found capable of creating energy-disordered sites and inducing energetic electric force to overcome the Coulomb interactions between electron-hole pairs, thus promoting the electron-hole separation to achieve a high generation of reactive oxygen species (ROS). Thanks to its high activity in generating ROS upon exposure to light, the as-prepared photocatalytic mask shows high pathogen sterilization performance. This, in turn, prolongs the mask's protective lifetime, decreases the need for regular replacement, and decreases medical waste production. The work demonstrated here opens new viewpoints in designing pathogens biocidal protective devices for health protection, offering significant promise in specific environment self-protection.

5.
Water Res ; 258: 121761, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38749183

RESUMO

Anthropogenic activities significantly impact the elemental cycles in aquatic ecosystems, with the N-cycling playing a critical role in potential nutrient turnover and substance cycling. We hypothesized that measures to prevent COVID-19 transmission profoundly altered the nitrogen cycle in riverine ecosystems. To investigate this, we re-analyzed metagenomic data and identified 60 N-cycling genes and 21 host metagenomes from four urban reaches (one upstream city, Wuhan, and two downstream cities) along the Yangtze River. Our analyses revealed a marked decrease in the abundance of bacterial ammonia monooxygenase genes, as well as in the host, ammonia-oxidizing autotrophic Nitrosomonas, followed by a substantial recovery post-pandemic. We posited that discharge of sodium hypochlorite (NaOCl) disinfectant may be a primary factor in the reduction of N-cycling process. To test this hypothesis, we exposed pure cultures of Nitrosomonas europaea to NaOCl to explore the microbial stress response. Results indicated that NaOCl exposure rapidly compromised the cell structure and inhibited ammonia oxidation of N. europaea, likely due to oxidative stress damage and reduced expression of nitrogen metabolism-related ammonia monooxygenase. Using the functional tagging technique, we determined that NaOCl directly destroyed the ammonia monooxygenase protein and DNA structure. This study highlights the negative impacts of chlorine disinfectants on the function of aquatic ecosystems and elucidates potential mechanisms of action.


Assuntos
Amônia , COVID-19 , Desinfetantes , Oxirredução , Amônia/metabolismo , Desinfetantes/farmacologia , Hipoclorito de Sódio/farmacologia , Ecossistema , Ciclo do Nitrogênio , Nitrosomonas europaea/metabolismo , Nitrosomonas europaea/efeitos dos fármacos , SARS-CoV-2 , Rios
6.
ACS Appl Bio Mater ; 7(6): 3758-3765, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38768375

RESUMO

Drug-resistant bacteria present a grave threat to human health. Fluorescence imaging-guided photodynamic antibacterial therapy holds enormous potential as an innovative treatment in antibacterial therapy. However, the development of a fluorescent material with good water solubility, large Stokes shift, bacterial identification, and high photodynamic antibacterial efficiency remains challenging. In this study, we successfully synthesized an amphiphilic aggregation-induced emission (AIE) fluorescent probe referred to as NPTPA-QM. This probe possesses the ability to perform live-bacteria fluorescence imaging while also exhibiting antibacterial activity, specifically against Staphylococcus aureus (S. aureus). We demonstrate that NPTPA-QM can eliminate S. aureus at a very low concentration (2 µmol L-1). Moreover, it can effectively promote skin wound healing. Meanwhile, this NPTPA-QM exhibits an excellent imaging ability by simple mixing with S. aureus. In summary, this research presents a straightforward and highly effective method for creating "amphiphilic" AIE fluorescent probes with antibacterial properties. Additionally, it offers a rapid approach for imaging bacteria utilizing red emission.


Assuntos
Antibacterianos , Materiais Biocompatíveis , Corantes Fluorescentes , Teste de Materiais , Testes de Sensibilidade Microbiana , Imagem Óptica , Tamanho da Partícula , Staphylococcus aureus , Staphylococcus aureus/efeitos dos fármacos , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Corantes Fluorescentes/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Estrutura Molecular , Camundongos , Animais , Humanos , Tensoativos/química , Tensoativos/farmacologia , Tensoativos/síntese química
7.
Chin J Integr Med ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753276

RESUMO

Rheumatoid arthritis (RA) is a worldwide public health problem. Interventions to delay or prevent the onset of RA have attracted much attention in recent years, and researchers are now exploring various prevention strategies. At present, there is still no unified consensus for RA prevention, but targeting therapeutic windows and implementing interventions for at-risk individuals are extremely important. Due to the limited number of clinical trials on pharmacologic interventions, further studies are needed to explore and establish optimal intervention regimens and effective measures to prevent progression to RA. In this review, we introduce the RA disease process and risk factors, and present research on the use of both Western and Chinese medicine from clinical perspectives regarding RA prevention. Furthermore, we describe several complete and ongoing clinical studies on the use of Chinese herbal formulae for the prevention of RA.

8.
Talanta ; 275: 126134, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692044

RESUMO

Phosphoenolpyruvate (PEP) is an essential intermediate metabolite that is involved in various vital biochemical reactions. However, achieving the direct and accurate quantification of PEP in plasma or serum poses a significant challenge owing to its strong polarity and metal affinity. In this study, a sensitive method for the direct determination of PEP in plasma and serum based on ethylenediaminetetraacetic acid (EDTA)-facilitated hydrophilic interaction liquid chromatography-tandem mass spectrometry was developed. Superior chromatographic retention and peak shapes were achieved using a zwitterionic stationary-phase HILIC column with a metal-inert inner surface. Efficient dechelation of PEP-metal complexes in serum/plasma samples was achieved through the introduction of EDTA, resulting in a significant enhancement of the PEP signal. A PEP isotopically labelled standard was employed as a surrogate analyte for the determination of endogenous PEP, and validation assessments proved the sensitivity, selectivity, and reproducibility of this method. The method was applied to the comparative quantification of PEP in plasma and serum samples from mice and rats, as well as in HepG2 cells, HEK293T cells, and erythrocytes; the results confirmed its applicability in PEP-related biomedical research. The developed method can quantify PEP in diverse biological matrices, providing a feasible opportunity to investigate the role of PEP in relevant biomedical research.


Assuntos
Ácido Edético , Interações Hidrofóbicas e Hidrofílicas , Fosfoenolpiruvato , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Animais , Humanos , Ácido Edético/química , Camundongos , Cromatografia Líquida/métodos , Ratos , Fosfoenolpiruvato/química , Fosfoenolpiruvato/sangue , Fosfoenolpiruvato/metabolismo , Células HEK293 , Células Hep G2 , Ratos Sprague-Dawley , Masculino
9.
Adv Healthc Mater ; : e2400421, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576069

RESUMO

Glioblastoma (GBM), the most prevalent and aggressive primary malignant brain tumor, exhibits profound immunosuppression and demonstrates a low response rate to current immunotherapy strategies. Manganese cations (Mn2+) directly activate the cGAS/STING pathway and induce the unique catalytic synthesis of 2'3'-cGAMP to facilitate type I IFN production, thereby enhancing innate immunity. Here, a telodendrimer and Mn2+-based nanodriver (PLHM) with a small size is developed, which effectively target lymph nodes through the blood circulation and exhibit tumor-preventive effects at low doses of Mn2+ (3.7 mg kg-1). On the other hand, the PLHM nanodriver also exhibits apparent antitumor effects in GBM-bearing mice via inducing in vivo innate immune responses. The combination of PLHM with doxorubicin nanoparticles (PLHM-DOX NPs) results in superior inhibition of tumor growth in GBM-bearing mice due to the synergistic potentiation of STING pathway functionality by Mn2+ and the presence of cytoplasmic DNA. These findings demonstrate that PLHM-DOX NPs effectively stimulate innate immunity, promote dendritic cell maturation, and orchestrate cascaded infiltration of CD8 cytotoxic T lymphocytes within glioblastomas characterized by low immunogenicity. These nanodivers chelated with Mn2+ show promising potential for tumor prevention and antitumor effects on glioblastoma by activating the STING pathway.

10.
Materials (Basel) ; 17(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612036

RESUMO

Platinum plays a crucial role in the superior high-temperature oxidation resistance of Pt-modified nickel aluminide (PtAl) coatings. However, PtAl coatings usually serve in thermo-mechanical coupling environments. To investigate whether Pt contributes to the high-temperature mechanical properties of PtAl coating, stress rupture tests under 1100 °C/100 MPa were performed on PtAl coatings with varying Pt contents. The different coatings were obtained by changing the thickness of the electroplated Pt layer, followed by a diffusion heat treatment and the aluminizing process in the present work. The results of the stress rupture tests indicated that an increasing Pt content resulted in a significant decrease in the stress rupture life of PtAl-coated superalloys under 1100 °C/100 MPa. Theoretical calculations and microstructural analysis suggested that an increased coating thickness due to the Pt content is not the main reason for this decline. It was found that the cracks generated close to the substrate in high-Pt-coated superalloys accelerated the fracture failure.

13.
Nanomedicine (Lond) ; 19(9): 741-754, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38390688

RESUMO

Aims: To develop an effective universal vaccine against antigenically different influenza viruses. Materials & methods: We generated influenza virus-like particles (VLPs) expressing the H1 and H3 antigens with or without M2e5x. VLP-induced immune responses and crossprotection against H1N1, H3N2 or H5N1 viruses were assessed to evaluate their protective efficacy. Results: H1H3M2e5x immunization elicited higher crossreactive IgG antibodies than H1H3 VLPs. Upon challenge, both VLPs enhanced lung IgG, IgA and germinal center B-cell responses compared with control. While these VLPs conferred protection, H1H3M2e5x showed greater lung viral load reduction than H1H3 VLPs with minimal body weight loss. Conclusion: Utilizing VLPs containing dual-hemagglutinin, along with M2e5x, can be a vaccination strategy for inducing crossprotection against influenza A viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Animais , Camundongos , Influenza Humana/prevenção & controle , Hemaglutininas , Vírus da Influenza A Subtipo H3N2 , Vacinas contra Influenza/uso terapêutico , Imunoglobulina G , Infecções por Orthomyxoviridae/prevenção & controle , Camundongos Endogâmicos BALB C
14.
Environ Res ; 249: 118497, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38365054

RESUMO

Developing a photoelectric cathode capable of efficiently activating molecular oxygen to degrade pollutants is a coveted yet challenging goal. In pursuit of this, we synthesize a Fe doped porous carbon nitride catalyst (Fe-CN) using an ionothermal strategy and subsequently loaded it on the hydrophobic carbon felt (CF) to fabricate the Fe-CN/CF photoelectric cathode. This cathode benefits from the synergistic effects between the porous CN support and the highly dispersed Fe species, which enhance O2 absorption and activation. Additionally, the hydrophobic CF serves as a gas diffusion layer, accelerating O2 mass transfer. These features enable the Fe-CN/CF cathode to demonstrate notable photoelectrocatalytic (PEC) degradation efficiency. Specifically, under optimal conditions (cathodic bias of -0.3 VAg/AgCl, pH 7, and a catalyst loading of 3 mg/cm2), the system achieves a 76.4% removal rate of tetracycline (TC) within 60 min. The general application potential of this system is further underscored by its ability to remove approximately 98% of 4-chlorophenol (4-CP) and phenol under identical conditions. Subsequent investigations into the active species and degradation pathways reveal that 1O2 and h+ play dominant role during the PEC degradation process, leading to gradually breakdown of TC into less toxicity, smaller molecular intermediates. This work presents a straightforward yet effective strategy for constructing efficient PEC systems that leverage molecular oxygen activation to degrade pollutants.


Assuntos
Carbono , Ferro , Nitrilas , Oxigênio , Nitrilas/química , Oxigênio/química , Carbono/química , Ferro/química , Catálise , Poluentes Químicos da Água/química , Porosidade , Interações Hidrofóbicas e Hidrofílicas , Eletrodos , Técnicas Eletroquímicas/métodos
15.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365247

RESUMO

Bacterial communities are intricate ecosystems in which various members interact, compete for resources, and influence each other's growth. Antibiotics intensify this complexity, posing challenges in maintaining biodiversity. In this study, we delved into the behavior of kin bacterial communities when subjected to antibiotic perturbations, with a particular focus on how interspecific interactions shape these responses. We hypothesized that social cheating-where resistant strains shield both themselves and neighboring cheaters-obstructed coexistence, especially when kin bacteria exhibited varied growth rates and antibiotic sensitivities. To explore potential pathways to coexistence, we incorporated a third bacterial member, anticipating a shift in the dynamics of community coexistence. Simulations and experimental bacterial communities confirmed our predictions, emphasizing the pivotal role of interspecific competition in promoting coexistence under antibiotic interference. These insights are crucial for understanding bacterial ecosystem stability, interpreting drug-microbiome interactions, and predicting bacterial community adaptations to environmental changes.


Assuntos
Ecossistema , Microbiota , Biodiversidade , Antibacterianos/farmacologia , Ecologia , Proliferação de Células
16.
Small ; : e2310352, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368257

RESUMO

Extensive research has focused on developing wide-bandgap metal compound-based passivating contacts as alternatives to conventional doped-silicon-layer-based passivating contacts to mitigate parasitic absorption losses in crystalline silicon (c-Si) solar cells. Herein, thermally-evaporated aluminum halides (AlX)-based electron-selective passivating contacts for c-Si solar cells are investigated. A low contact resistivity of 60.5 and 38.4 mΩ cm2 is obtained on the AlClx /n-type c-Si (n-Si) and AlFx /n-Si heterocontacts, respectively, thanks to the low work function of AlX. Power conversion efficiencies (PCEs) of 19.1% and 19.6% are achieved on proof-of-concept n-Si solar cells featuring a full-area AlClx /Al and AlFx /Al passivating contact, respectively. By further implementing an ultrathin SiO2 passivation interlayer and a pre-annealing treatment, the electron selectivity (especially the surface passivation) of AlX is significantly enhanced. Accordingly, a remarkable PCE of 21% is achieved on n-Si solar cells featuring a full-area SiO2 /AlFx /Al rear contact. AlFx -based electron-selective passivating contacts exhibit good thermal stability up to ≈400 °C and better long-term environmental stability. This work demonstrates the potential of AlFx -based electron-selective passivating contact for solar cells.

17.
Front Oncol ; 14: 1278340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384807

RESUMO

In this case report, we present the case of a 46-year-old woman with a hepatic neuroendocrine tumor (NET G2)-induced liver metastases. Initially, the left lateral lobectomy of the liver was performed. The post-operative pathological examination revealed NET G2, leading to the post-operative recovery with a general review. Further, the re-examination of liver magnetic resonance imaging (MRI) showed post-operative changes in the tumor of the left lateral lobe, with multiple liver masses and possible metastasis. Thus, the liver interventional therapy and apatinib-based targeted therapy based on the "camrelizumab + apatinib" regimen were performed, respectively. The 20-month follow-up indicated a slightly increased hepatic hilum and retroperitoneal lymph nodes, accompanied by hand-foot syndrome. Eventually, the overall condition continued to relieve, indicating that the combined treatment could substantially improve the NET G2 conditions-associated liver metastasis.

18.
EClinicalMedicine ; 68: 102409, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38273888

RESUMO

Background: Acute kidney injury (AKI) is a common and serious organ dysfunction in critically ill children. Early identification and prediction of AKI are of great significance. However, current AKI criteria are insufficiently sensitive and specific, and AKI heterogeneity limits the clinical value of AKI biomarkers. This study aimed to establish and validate an explainable prediction model based on the machine learning (ML) approach for AKI, and assess its prognostic implications in children admitted to the pediatric intensive care unit (PICU). Methods: This multicenter prospective study in China was conducted on critically ill children for the derivation and validation of the prediction model. The derivation cohort, consisting of 957 children admitted to four independent PICUs from September 2020 to January 2021, was separated for training and internal validation, and an external data set of 866 children admitted from February 2021 to February 2022 was employed for external validation. AKI was defined based on serum creatinine and urine output using the Kidney Disease: Improving Global Outcome (KDIGO) criteria. With 33 medical characteristics easily obtained or evaluated during the first 24 h after PICU admission, 11 ML algorithms were used to construct prediction models. Several evaluation indexes, including the area under the receiver-operating-characteristic curve (AUC), were used to compare the predictive performance. The SHapley Additive exPlanation method was used to rank the feature importance and explain the final model. A probability threshold for the final model was identified for AKI prediction and subgrouping. Clinical outcomes were evaluated in various subgroups determined by a combination of the final model and KDIGO criteria. Findings: The random forest (RF) model performed best in discriminative ability among the 11 ML models. After reducing features according to feature importance rank, an explainable final RF model was established with 8 features. The final model could accurately predict AKI in both internal (AUC = 0.929) and external (AUC = 0.910) validations, and has been translated into a convenient tool to facilitate its utility in clinical settings. Critically ill children with a probability exceeding or equal to the threshold in the final model had a higher risk of death and multiple organ dysfunctions, regardless of whether they met the KDIGO criteria for AKI. Interpretation: Our explainable ML model was not only successfully developed to accurately predict AKI but was also highly relevant to adverse outcomes in individual children at an early stage of PICU admission, and it mitigated the concern of the "black-box" issue with an undirect interpretation of the ML technique. Funding: The National Natural Science Foundation of China, Jiangsu Province Science and Technology Support Program, Key talent of women's and children's health of Jiangsu Province, and Postgraduate Research & Practice Innovation Program of Jiangsu Province.

19.
Respir Res ; 25(1): 7, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178222

RESUMO

Excessive pulmonary inflammation is the hallmark of respiratory syncytial virus (RSV) infection hindering efficacious RSV vaccine development. Yet, the vast majority of the experimental RSV vaccine studies use laboratory-adapted RSV strains that do not reflect the highly pathogenic and inflammatory nature of the virus found in clinical settings. Here, we re-evaluated the protective efficacy of the virus-like particle (VLP) vaccine co-expressing the pre-fusion (pre-F) protein and G protein with tandem repeats (Gt) reported in our previous study against the recombinant RSV rA2-line19F strain, which inflicts severe mucus production and inflammation in mice. VLP vaccine immunization elicited virus-specific serum antibody responses that mediated RSV rA2-line19F virus neutralization. VLP vaccine immunization promoted Th1 immune response development in the spleens and CD8 + T cell influx into the lungs of mice, which are essential for efficient viral clearance and dampened inflammatory response. When compared to the VLPs expressing only the pre-F antigen, those co-expressing both pre-F and Gt antigens conferred better protection in mice against rA2-line19F challenge infection. Overall, our data suggest that the pre-clinical VLP vaccine co-expressing RSV pre-F and Gt antigens can effectively protect mice against RSV strains that resemble pathogenic clinical isolates.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Animais , Camundongos , Anticorpos Antivirais , Pulmão/patologia , Vacinas contra Vírus Sincicial Respiratório/genética , Proteínas de Ligação ao GTP , Camundongos Endogâmicos BALB C , Anticorpos Neutralizantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA