Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732143

RESUMO

This study explores low-intensity extracorporeal shock wave therapy (LiESWT)'s efficacy in alleviating detrusor hyperactivity with impaired contractility (DHIC) induced by ovarian hormone deficiency (OHD) in ovariectomized rats. The rats were categorized into the following four groups: sham group; OVX group, subjected to bilateral ovariectomy (OVX) for 12 months to induce OHD; OVX + SW4 group, underwent OHD for 12 months followed by 4 weeks of weekly LiESWT; and OVX + SW8 group, underwent OHD for 12 months followed by 8 weeks of weekly LiESWT. Cystometrogram studies and voiding behavior tracing were used to identify the symptoms of DHIC. Muscle strip contractility was evaluated through electrical-field, carbachol, ATP, and KCl stimulations. Western blot and immunofluorescence analyses were performed to assess the expressions of various markers related to bladder dysfunction. The OVX rats exhibited significant bladder deterioration and overactivity, alleviated by LiESWT. LiESWT modified transient receptor potential vanilloid (TRPV) channel expression, regulating calcium concentration and enhancing bladder capacity. It also elevated endoplasmic reticulum (ER) stress proteins, influencing ER-related Ca2+ channels and receptors to modulate detrusor muscle contractility. OHD after 12 months led to neuronal degeneration and reduced TRPV1 and TRPV4 channel activation. LiESWT demonstrated potential in enhancing angiogenic remodeling, neurogenesis, and receptor response, ameliorating DHIC via TRPV channels and cellular signaling in the OHD-induced DHIC rat model.


Assuntos
Modelos Animais de Doenças , Tratamento por Ondas de Choque Extracorpóreas , Contração Muscular , Canais de Cátion TRPV , Bexiga Urinária , Animais , Feminino , Ratos , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Tratamento por Ondas de Choque Extracorpóreas/métodos , Bexiga Urinária/fisiopatologia , Bexiga Urinária/metabolismo , Bexiga Urinária Hiperativa/terapia , Bexiga Urinária Hiperativa/metabolismo , Bexiga Urinária Hiperativa/fisiopatologia , Bexiga Urinária Hiperativa/etiologia , Ovariectomia , Ratos Sprague-Dawley , Ovário/metabolismo
2.
Int J Mol Sci ; 24(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175945

RESUMO

Postmenopausal women who have ovary hormone deficiency (OHD) may experience urological dysfunctions, such as overactive bladder (OAB) symptoms. This study used a female Sprague Dawley rat model that underwent bilateral ovariectomy (OVX) to simulate post-menopause in humans. The rats were treated with platelet-rich plasma (PRP) or platelet-poor plasma (PPP) after 12 months of OVX to investigate the therapeutic effects of PRP on OHD-induced OAB. The OVX-treated rats exhibited a decrease in the expression of urothelial barrier-associated proteins, altered hyaluronic acid (hyaluronan; HA) production, and exacerbated bladder pathological damage and interstitial fibrosis through NFƘB/COX-2 signaling pathways, which may contribute to OAB. In contrast, PRP instillation for four weeks regulated the inflammatory fibrotic biosynthesis, promoted cell proliferation and matrix synthesis of stroma, enhanced mucosal regeneration, and improved urothelial mucosa to alleviate OHD-induced bladder hyperactivity. PRP could release growth factors to promote angiogenic potential for bladder repair through laminin/integrin-α6 and VEGF/VEGF receptor signaling pathways in the pathogenesis of OHD-induced OAB. Furthermore, PRP enhanced the expression of HA receptors and hyaluronan synthases (HAS), reduced hyaluronidases (HYALs), modulated the fibroblast-myofibroblast transition, and increased angiogenesis and matrix synthesis via the PI3K/AKT/m-TOR pathway, resulting in bladder remodeling and regeneration.


Assuntos
Plasma Rico em Plaquetas , Bexiga Urinária Hiperativa , Humanos , Ratos , Feminino , Animais , Bexiga Urinária Hiperativa/terapia , Bexiga Urinária Hiperativa/tratamento farmacológico , Ratos Sprague-Dawley , Ácido Hialurônico/farmacologia , Fosfatidilinositol 3-Quinases , Plasma Rico em Plaquetas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA