Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS EST Air ; 1(7): 646-659, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39021670

RESUMO

Hydroxymethanesulfonate (HMS) in fine aerosol particles has been reported at significant concentrations along with sulfate under extreme cold conditions (-35 °C) in Fairbanks, Alaska, a high latitude city. HMS, a component of S(IV) and an adduct of formaldehyde and sulfur dioxide, forms in liquid water. Previous studies may have overestimated HMS concentrations by grouping it with other S(IV) species. In this work, we further investigate HMS and the speciation of S(IV) through the Alaskan Layered Pollution and Chemical Analysis (ALPACA) intensive study in Fairbanks. We developed a method utilizing hydrogen peroxide to isolate HMS and found that approximately 50% of S(IV) is HMS for total suspended particulates and 70% for PM2.5. The remaining unidentified S(IV) species are closely linked to HMS during cold polluted periods, showing strong increases in concentration relative to sulfate with decreasing temperature, a weak dependence on particle water, and similar particle size distributions, suggesting a common aqueous formation process. A portion of the unidentified S(IV) may originate from additional aldehyde-S(IV) adducts that are unstable in the water-based chemical analysis process, but further chemical characterization is needed. These results show the importance of organic S(IV) species in extreme cold environments that promote unique aqueous chemistry in supercooled liquid particles.

2.
ACS EST Air ; 1(3): 175-187, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38482267

RESUMO

The oxidative potential (OP) of outdoor PM2.5 in wintertime Fairbanks, Alaska, is investigated and compared to those in wintertime Atlanta and Los Angeles. Approximately 40 filter samples collected in January-February 2022 at a Fairbanks residential site were analyzed for OP utilizing dithiothreitol-depletion (OPDTT) and hydroxyl-generation (OPOH) assays. The study-average PM2.5 mass concentration was 12.8 µg/m3, with a 1 h average maximum of 89.0 µg/m3. Regression analysis, correlations with source tracers, and contrast between cold and warmer events indicated that OPDTT was mainly sensitive to copper, elemental carbon, and organic aerosol from residential wood burning, and OPOH to iron and organic aerosol from vehicles. Despite low photochemically-driven oxidation rates, the water-soluble fraction of OPDTT was unusually high at 77%, mainly from wood burning emissions. In contrast to other locations, the Fairbanks average PM2.5 mass concentration was higher than Atlanta and Los Angeles, whereas OPDTT in Fairbanks and Atlanta were similar, and Los Angeles had the highest OPDTT and OPOH. Site differences were observed in OP when normalized by both the volume of air sampled and the particle mass concentration, corresponding to exposure and the intrinsic health-related properties of PM2.5, respectively. The sensitivity of OP assays to specific aerosol components and sources can provide insights beyond the PM2.5 mass concentration when assessing air quality.

3.
ACS EST Air ; 1(3): 188-199, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38482268

RESUMO

The indoor air quality of a residential home during winter in Fairbanks, Alaska, was investigated and contrasted with outdoor levels. Twenty-four-hour average indoor and outdoor filter samples were collected from January 17 to February 25, 2022, in a residential area with high outdoor PM2.5 concentrations. The oxidative potential of PM2.5 was determined using the dithiothreitol-depletion assay (OPDTT). For the unoccupied house, the background indoor-to-outdoor (I/O) ratio of mass-normalized OP (OPmDTT), a measure of the intrinsic health-relevant properties of the aerosol, was less than 1 (0.53 ± 0.37), implying a loss of aerosol toxicity as air was transported indoors. This may result from transport and volatility losses driven by the large gradients in temperature (average outdoor temperature of -19°C/average indoor temperature of 21 °C) or relative humidity (average outdoor RH of 78%/average indoor RH of 11%), or both. Various indoor activities, including pellet stove use, simple cooking experiments, incense burning, and mixtures of these activities, were conducted. The experiments produced PM2.5 with a highly variable OPmDTT. PM2.5 from cooking emissions had the lowest OP values, while pellet stove PM2.5 had the highest. Correlations between volume-normalized OPDTT (OPvDTT), relevant to exposure, and indoor PM2.5 mass concentration during experiments were much lower compared to those in outdoor environments. This suggests that mass concentration alone can be a poor indicator of possible adverse effects of various indoor emissions. These findings highlight the importance of considering both the quantity of particles and sources (chemical composition), as health metrics for indoor air quality.

4.
ACS EST Air ; 1(3): 200-222, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38482269

RESUMO

The Alaskan Layered Pollution And Chemical Analysis (ALPACA) field experiment was a collaborative study designed to improve understanding of pollution sources and chemical processes during winter (cold climate and low-photochemical activity), to investigate indoor pollution, and to study dispersion of pollution as affected by frequent temperature inversions. A number of the research goals were motivated by questions raised by residents of Fairbanks, Alaska, where the study was held. This paper describes the measurement strategies and the conditions encountered during the January and February 2022 field experiment, and reports early examples of how the measurements addressed research goals, particularly those of interest to the residents. Outdoor air measurements showed high concentrations of particulate matter and pollutant gases including volatile organic carbon species. During pollution events, low winds and extremely stable atmospheric conditions trapped pollution below 73 m, an extremely shallow vertical scale. Tethered-balloon-based measurements intercepted plumes aloft, which were associated with power plant point sources through transport modeling. Because cold climate residents spend much of their time indoors, the study included an indoor air quality component, where measurements were made inside and outside a house to study infiltration and indoor sources. In the absence of indoor activities such as cooking and/or heating with a pellet stove, indoor particulate matter concentrations were lower than outdoors; however, cooking and pellet stove burns often caused higher indoor particulate matter concentrations than outdoors. The mass-normalized particulate matter oxidative potential, a health-relevant property measured here by the reactivity with dithiothreiol, of indoor particles varied by source, with cooking particles having less oxidative potential per mass than pellet stove particles.

5.
Proc Natl Acad Sci U S A ; 119(37): e2201213119, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067322

RESUMO

Atmospheric electrical discharges are now known to generate unexpectedly large amounts of the atmosphere's primary oxidant, hydroxyl (OH), in thunderstorm anvils, where electrical discharges are caused by atmospheric charge separation. The question is "Do other electrical discharges also generate large amounts of oxidants?" In this paper, we demonstrate that corona formed on grounded metal objects under thunderstorms produce extreme amounts of OH, hydroperoxyl (HO2), and ozone (O3). Hundreds of parts per trillion to parts per billion of OH and HO2 were measured during seven thunderstorms that passed over the rooftop site during an air quality study in Houston, TX in summer 2006. A combination of analysis of these field results and laboratory experiments shows that these extreme oxidant amounts were generated by corona on the inlet of the OH-measuring instrument and that corona are easier to generate on lightning rods than on the inlet. In the laboratory, increasing the electric field increased OH, HO2, and O3, with 14 times more O3 generated than OH and HO2, which were equal. Calculations show that corona on lightning rods can annually generate OH that is 10-100 times ambient amounts within centimeters of the lightning rod and on high-voltage electrical power lines can generate OH that is 500 times ambient a meter away from the corona. Contrary to current thinking, previously unrecognized corona-generated OH, not corona-generated UV radiation, mostly likely initiates premature degradation of high-voltage polymer insulators.

6.
Environ Sci Technol ; 56(12): 7657-7667, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35544773

RESUMO

Fairbanks, Alaska, is a subarctic city with fine particle (PM2.5) concentrations that exceed air quality regulations in winter due to weak dispersion caused by strong atmospheric inversions, local emissions, and the unique chemistry occurring under the cold and dark conditions. Here, we report on observations from the winters of 2020 and 2021, motivated by our pilot study that showed exceptionally high concentrations of fine particle hydroxymethanesulfonate (HMS) or related sulfur(IV) species (e.g., sulfite and bisulfite). We deployed online particle-into-liquid sampler-ion chromatography (PILS-IC) in conjunction with a suite of instruments to determine HMS precursors (HCHO, SO2) and aerosol composition in general, with the goal to characterize the sources and sinks of HMS in wintertime Fairbanks. PM2.5 HMS comprised a significant fraction of PM2.5 sulfur (26-41%) and overall PM2.5 mass concentration of 2.8-6.8% during pollution episodes, substantially higher than what has been observed in other regions, likely due to the exceptionally low temperatures. HMS peaked in January, with lower concentrations in December and February, resulting from changes in precursors and meteorological conditions. Strong correlations with inorganic sulfate and organic mass during pollution events suggest that HMS is linked to processes responsible for poor air quality episodes. These findings demonstrate unique aspects of air pollution formation in cold and humid atmospheres.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis/química , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Alaska , Monitoramento Ambiental/métodos , Material Particulado/análise , Projetos Piloto , Estações do Ano , Enxofre
7.
Environ Sci Technol ; 55(13): 8561-8572, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34129328

RESUMO

Light-absorptivity of organic aerosol may play an important role in visibility and climate forcing, but it has not been assessed as extensively as black carbon (BC) aerosol. Based on multiwavelength thermal/optical analysis and spectral mass balance, this study quantifies BC for the U.S. Interagency Monitoring of Protected Visual Environments (IMPROVE) network while developing a brownness index (γBr) for non-BC organic carbon (OC*) to illustrate the spatiotemporal trends of light-absorbing brown carbon (BrC) content. OC* light absorption efficiencies range from 0 to 3.1 m2 gC-1 at 405 nm, corresponding to the lowest and highest BrC content of 0 and 100%, respectively. BC, OC*, and γBr explain >97% of the variability of measured spectral light absorption (405-980 nm) across 158 IMPROVE sites. Network-average OC* light absorptions at 405 nm are 50 and 28% those for BC over rural and urban areas, respectively. Larger organic fractions of light absorption occur in winter, partially due to higher organic brownness. Winter γBr exhibits a dramatic regional/urban-rural contrast consistent with anthropogenic BrC emissions from residential wood combustion. The spatial differences diminish to uniformly low γBr in summer, suggesting effective BrC photobleaching over the midlatitudes. An empirical relationship between BC, ambient temperature, and γBr is established, which can facilitate the incorporation of organic aerosol absorptivity into climate and visibility models that currently assume either zero or static organic light absorption efficiencies.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Biomassa , Carbono/análise , Monitoramento Ambiental , Material Particulado/análise , Fotodegradação , Estações do Ano , Estados Unidos
8.
Atmos Chem Phys ; 21: 1-19, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34987561

RESUMO

Questions about how emissions are changing during the COVID-19 lockdown periods cannot be answered by observations of atmospheric trace gas concentrations alone, in part due to simultaneous changes in atmospheric transport, emissions, dynamics, photochemistry, and chemical feedback. A chemical transport model simulation benefiting from a multi-species inversion framework using well-characterized observations should differentiate those influences enabling to closely examine changes in emissions. Accordingly, we jointly constrain NO x and VOC emissions using well-characterized TROPOspheric Monitoring Instrument (TROPOMI) HCHO and NO2 columns during the months of March, April, and May 2020 (lockdown) and 2019 (baseline). We observe a noticeable decline in the magnitude of NO x emissions in March 2020 (14 %-31 %) in several major cities including Paris, London, Madrid, and Milan, expanding further to Rome, Brussels, Frankfurt, Warsaw, Belgrade, Kyiv, and Moscow (34 %-51 %) in April. However, NO x emissions remain at somewhat similar values or even higher in some portions of the UK, Poland, and Moscow in March 2020 compared to the baseline, possibly due to the timeline of restrictions. Comparisons against surface monitoring stations indicate that the constrained model underrepresents the reduction in surface NO2. This underrepresentation correlates with the TROPOMI frequency impacted by cloudiness. During the month of April, when ample TROPOMI samples are present, the surface NO2 reductions occurring in polluted areas are described fairly well by the model (model: -21 ± 17 %, observation: -29 ± 21 %). The observational constraint on VOC emissions is found to be generally weak except for lower latitudes. Results support an increase in surface ozone during the lockdown. In April, the constrained model features a reasonable agreement with maximum daily 8 h average (MDA8) ozone changes observed at the surface (r = 0.43), specifically over central Europe where ozone enhancements prevail (model: +3.73 ± 3.94 %, + 1.79 ppbv, observation: +7.35 ± 11.27 %, +3.76 ppbv). The model suggests that physical processes (dry deposition, advection, and diffusion) decrease MDA8 surface ozone in the same month on average by -4.83 ppbv, while ozone production rates dampened by largely negative J NO 2 [ NO 2 ] - k NO + O 3 [ NO ] [ O 3 ] become less negative, leading ozone to increase by +5.89 ppbv. Experiments involving fixed anthropogenic emissions suggest that meteorology contributes to 42 % enhancement in MDA8 surface ozone over the same region with the remaining part (58 %) coming from changes in anthropogenic emissions. Results illustrate the capability of satellite data of major ozone precursors to help atmospheric models capture ozone changes induced by abrupt emission anomalies.

9.
Geophys Res Lett ; 47(23)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34381286

RESUMO

A newly developed dataset from the Interagency Monitoring of PROtected Visual Environments (IMPROVE) observation network, combined with a 3-D chemical transport model, is used to evaluate the spatial and temporal variability of brown carbon (BrC) in the United States. The model with BrC emitted from biomass burning and biofuel emissions agrees with the seasonal and spatial variability of BrC planetary boundary layer (PBL) absorption aerosol optical depth (AAOD) observations within a factor of 2. The model without whitening, the tendency for absorption to decrease with aerosol aging, overestimates the observed BrC PBL AAOD, and does not reflect the measured BrC PBL AAOD spatial variability. The model shows higher absorption direct radiative effects (DRE) from BrC at northern high latitudes than at mid-latitudes in spring and summer, due to boreal fire emissions, long whitening lifetimes and high surface albedos. These findings highlight the need to study BrC over the Arctic region.

10.
Atmos Chem Phys ; 18(4): 2615-2651, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29963079

RESUMO

Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes) elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios. Efforts to properly identify and implement the fundamental and controlling mechanisms in atmospheric models benefit from intensive observation periods, during which collocated measurements of diverse, speciated chemicals in both the gas and condensed phases are obtained. The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS and SEAC4RS) conducted during the summer of 2013 provided an unprecedented opportunity for the atmospheric modeling community to come together to evaluate, diagnose and improve the representation of fundamental climate and air quality processes in models of varying temporal and spatial scales. This paper is aimed at discussing progress in evaluating, diagnosing and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models. The effort focused primarily on model representation of fundamental atmospheric processes that are essential to the formation of ozone, secondary organic aerosol (SOA) and other trace species in the troposphere, with the ultimate goal of understanding the radiative impacts of these species in the southeast and elsewhere. Here we address questions surrounding four key themes: gas-phase chemistry, aerosol chemistry, regional climate and chemistry interactions, and natural and anthropogenic emissions. We expect this review to serve as a guidance for future modeling efforts.

11.
Atmos Chem Phys ; 17(3): 2103-2162, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30147712

RESUMO

Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry-climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.

12.
J Phys Chem A ; 120(9): 1468-78, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26575342

RESUMO

NOx (NOx ≡ NO + NO2) regulates O3 and HOx (HOx ≡ OH + HO2) concentrations in the upper troposphere. In the laboratory, it is difficult to measure rates and branching ratios of the chemical reactions affecting NOx at the low temperatures and pressures characteristic of the upper troposphere, making direct measurements in the atmosphere especially useful. We report quasi-Lagrangian observations of the chemical evolution of an air parcel following a lightning event that results in high NOx concentrations. These quasi-Lagrangian measurements obtained during the Deep Convective Clouds and Chemistry experiment are used to characterize the daytime rates for conversion of NOx to different peroxy nitrates, the sum of alkyl and multifunctional nitrates, and HNO3. We infer the following production rate constants [in (cm(3)/molecule)/s] at 225 K and 230 hPa: 7.2(±5.7) × 10(-12) (CH3O2NO2), 5.1(±3.1) × 10(-13) (HO2NO2), 1.3(±0.8) × 10(-11) (PAN), 7.3(±3.4) × 10(-12) (PPN), and 6.2(±2.9) × 10(-12) (HNO3). The HNO3 and HO2NO2 rates are ∼ 30-50% lower than currently recommended whereas the other rates are consistent with current recommendations to within ±30%. The analysis indicates that HNO3 production from the HO2 and NO reaction (if any) must be accompanied by a slower rate for the reaction of OH with NO2, keeping the total combined rate for the two processes at the rate reported for HNO3 production above.

13.
J Geophys Res Atmos ; 121(16): 9849-9861, 2016 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-29619286

RESUMO

We use a 0-D photochemical box model and a 3-D global chemistry-climate model, combined with observations from the NOAA Southeast Nexus (SENEX) aircraft campaign, to understand the sources and sinks of glyoxal over the Southeast United States. Box model simulations suggest a large difference in glyoxal production among three isoprene oxidation mechanisms (AM3ST, AM3B, and MCM v3.3.1). These mechanisms are then implemented into a 3-D global chemistry-climate model. Comparison with field observations shows that the average vertical profile of glyoxal is best reproduced by AM3ST with an effective reactive uptake coefficient γglyx of 2 × 10-3, and AM3B without heterogeneous loss of glyoxal. The two mechanisms lead to 0-0.8 µg m-3 secondary organic aerosol (SOA) from glyoxal in the boundary layer of the Southeast U.S. in summer. We consider this to be the lower limit for the contribution of glyoxal to SOA, as other sources of glyoxal other than isoprene are not included in our model. In addition, we find that AM3B shows better agreement on both formaldehyde and the correlation between glyoxal and formaldehyde (RGF = [GLYX]/[HCHO]), resulting from the suppression of δ-isoprene peroxy radicals (δ-ISOPO2). We also find that MCM v3.3.1 may underestimate glyoxal production from isoprene oxidation, in part due to an underestimated yield from the reaction of IEPOX peroxy radicals (IEPOXOO) with HO2. Our work highlights that the gas-phase production of glyoxal represents a large uncertainty in quantifying its contribution to SOA.

14.
Environ Sci Technol ; 47(20): 11403-13, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24004194

RESUMO

Atmospheric photooxidation of isoprene is an important source of secondary organic aerosol (SOA) and there is increasing evidence that anthropogenic oxidant emissions can enhance this SOA formation. In this work, we use ambient observations of organosulfates formed from isoprene epoxydiols (IEPOX) and methacrylic acid epoxide (MAE) and a broad suite of chemical measurements to investigate the relative importance of nitrogen oxide (NO/NO2) and hydroperoxyl (HO2) SOA formation pathways from isoprene at a forested site in California. In contrast to IEPOX, the calculated production rate of MAE was observed to be independent of temperature. This is the result of the very fast thermolysis of MPAN at high temperatures that affects the distribution of the MPAN reservoir (MPAN / MPA radical) reducing the fraction that can react with OH to form MAE and subsequently SOA (F(MAE formation)). The strong temperature dependence of F(MAE formation) helps to explain our observations of similar concentrations of IEPOX-derived organosulfates (IEPOX-OS; ~1 ng m(-3)) and MAE-derived organosulfates (MAE-OS; ~1 ng m(-3)) under cooler conditions (lower isoprene concentrations) and much higher IEPOX-OS (~20 ng m(-3)) relative to MAE-OS (<0.0005 ng m(-3)) at higher temperatures (higher isoprene concentrations). A kinetic model of IEPOX and MAE loss showed that MAE forms 10-100 times more ring-opening products than IEPOX and that both are strongly dependent on aerosol water content when aerosol pH is constant. However, the higher fraction of MAE ring opening products does not compensate for the lower MAE production under warmer conditions (higher isoprene concentrations) resulting in lower formation of MAE-derived products relative to IEPOX at the surface. In regions of high NOx, high isoprene emissions and strong vertical mixing the slower MPAN thermolysis rate aloft could increase the fraction of MPAN that forms MAE resulting in a vertically varying isoprene SOA source.


Assuntos
Aerossóis/análise , Aerossóis/química , Butadienos/química , Hemiterpenos/química , Pentanos/química , Anidridos/química , Atmosfera/química , Compostos de Epóxi/química , Radical Hidroxila/química , Metacrilatos/química , Oxirredução , Sulfatos/química , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA