Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanomicro Lett ; 15(1): 89, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029296

RESUMO

Highly sensitive gas sensors with remarkably low detection limits are attractive for diverse practical application fields including real-time environmental monitoring, exhaled breath diagnosis, and food freshness analysis. Among various chemiresistive sensing materials, noble metal-decorated semiconducting metal oxides (SMOs) have currently aroused extensive attention by virtue of the unique electronic and catalytic properties of noble metals. This review highlights the research progress on the designs and applications of different noble metal-decorated SMOs with diverse nanostructures (e.g., nanoparticles, nanowires, nanorods, nanosheets, nanoflowers, and microspheres) for high-performance gas sensors with higher response, faster response/recovery speed, lower operating temperature, and ultra-low detection limits. The key topics include Pt, Pd, Au, other noble metals (e.g., Ag, Ru, and Rh.), and bimetals-decorated SMOs containing ZnO, SnO2, WO3, other SMOs (e.g., In2O3, Fe2O3, and CuO), and heterostructured SMOs. In addition to conventional devices, the innovative applications like photo-assisted room temperature gas sensors and mechanically flexible smart wearable devices are also discussed. Moreover, the relevant mechanisms for the sensing performance improvement caused by noble metal decoration, including the electronic sensitization effect and the chemical sensitization effect, have also been summarized in detail. Finally, major challenges and future perspectives towards noble metal-decorated SMOs-based chemiresistive gas sensors are proposed.

2.
Small ; 18(50): e2204828, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36310138

RESUMO

Highly selective and sensitive H2 S sensors are in high demand in various fields closely related to human life. However, metal oxide semiconductors (MOSs) suffer from poor selectivity and single MOS@metal organic framework (MOF) core-shell nanocomposites are greatly limited due to the intrinsic low sensitivity of MOF shells. To simultaneously improve both selectivity and sensitivity, heterostructured α-Fe2 O3 @ZnO@ZIF-8 core-shell nanowires (NWs) are meticulously synthesized with the assistance of atomic layer deposition. The ZIF-8 shell with regular pores and special surface functional groups is attractive for excellent selectivity and the heterostructured α-Fe2 O3 @ZnO core with an additional electron depletion layer is promising with enhanced sensitivity compared to a single MOS core. As a result, the heterostructured α-Fe2 O3 @ZnO@ZIF-8 core-shell NWs achieve remarkable H2 S sensing performance with a high response (Rair /Rgas  = 32.2 to 10 ppm H2 S), superior selectivity, fast response/recovery speed (18.0/31.8 s), excellent long-term stability (at least over 3 months), and relatively low limit of detection (down to 200 ppb) at low operating temperature of 200 °C, far beyond α-Fe2 O3 @ZIF-8 or α-Fe2 O3 @ZnO core-shell NWs. Furthermore, a micro-electromechanical system-based H2 S gas sensor system with low power consumption is developed, holding great application potential in smart cities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA