Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Clin Case Rep ; 12(5): e8915, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38770415

RESUMO

Key Clinical Message: Atrial fibrillation is closely associated with thrombotic events. In non-valvular atrial fibrillation, 90% of thrombi are formed by the left atrial appendage. Left atrial appendage occlusion (LAAC) can effectively prevent the detachment of left atrial appendage thrombus during atrial fibrillation, thereby reducing the risk of long-term disability or death caused by thromboembolic events. However, the identification and management of complications in LAAC are also very important. Abstract: The efficacy and safety of left atrial appendage occlusion (LAAC) in preventing non-valvular atrial fibrillation stroke have been confirmed by multiple randomized controlled and registered studies, and have been recommended by several guidelines for stroke prevention in patients with atrial fibrillation at high-risk of stroke. We reported an 80-year-old male patient with persistent atrial fibrillation. The patient underwent left atrial appendage closure surgery due to high risk of embolism and bleeding. On the second day after surgery, echocardiography showed displacement of the left atrial appendage occluder. Immediately perform removal of left atrial appendage occlude and left atrial appendage occlusion on the same day, and the patient was discharged on the fifth day after surgery without any special circumstances. This case demonstrates the feasibility and important clinical significance of using interventional surgery to remove the left atrial appendage occluder after displacement in clinical practice.

2.
Adv Sci (Weinh) ; 11(16): e2303775, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38327094

RESUMO

The spread of prion-like protein aggregates is a common driver of pathogenesis in various neurodegenerative diseases, including Alzheimer's disease (AD) and related Tauopathies. Tau pathologies exhibit a clear progressive spreading pattern that correlates with disease severity. Clinical observation combined with complementary experimental studies has shown that Tau preformed fibrils (PFF) are prion-like seeds that propagate pathology by entering cells and templating misfolding and aggregation of endogenous Tau. While several cell surface receptors of Tau are known, they are not specific to the fibrillar form of Tau. Moreover, the underlying cellular mechanisms of Tau PFF spreading remain poorly understood. Here, it is shown that the lymphocyte-activation gene 3 (Lag3) is a cell surface receptor that binds to PFF but not the monomer of Tau. Deletion of Lag3 or inhibition of Lag3 in primary cortical neurons significantly reduces the internalization of Tau PFF and subsequent Tau propagation and neuron-to-neuron transmission. Propagation of Tau pathology and behavioral deficits induced by injection of Tau PFF in the hippocampus and overlying cortex are attenuated in mice lacking Lag3 selectively in neurons. These results identify neuronal Lag3 as a receptor of pathologic Tau in the brain,and for AD and related Tauopathies, a therapeutic target.


Assuntos
Proteína do Gene 3 de Ativação de Linfócitos , Neurônios , Tauopatias , Proteínas tau , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Antígenos CD/metabolismo , Antígenos CD/genética , Modelos Animais de Doenças , Neurônios/metabolismo , Proteínas tau/metabolismo , Proteínas tau/genética , Tauopatias/metabolismo , Tauopatias/genética , Tauopatias/patologia
3.
Nat Commun ; 15(1): 109, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168026

RESUMO

Host anti-viral factors are essential for controlling SARS-CoV-2 infection but remain largely unknown due to the biases of previous large-scale studies toward pro-viral host factors. To fill in this knowledge gap, we perform a genome-wide CRISPR dropout screen and integrate analyses of the multi-omics data of the CRISPR screen, genome-wide association studies, single-cell RNA-Seq, and host-virus proteins or protein/RNA interactome. This study uncovers many host factors that are currently underappreciated, including the components of V-ATPases, ESCRT, and N-glycosylation pathways that modulate viral entry and/or replication. The cohesin complex is also identified as an anti-viral pathway, suggesting an important role of three-dimensional chromatin organization in mediating host-viral interaction. Furthermore, we discover another anti-viral regulator KLF5, a transcriptional factor involved in sphingolipid metabolism, which is up-regulated, and harbors genetic variations linked to COVID-19 patients with severe symptoms. Anti-viral effects of three identified candidates (DAZAP2/VTA1/KLF5) are confirmed individually. Molecular characterization of DAZAP2/VTA1/KLF5-knockout cells highlights the involvement of genes related to the coagulation system in determining the severity of COVID-19. Together, our results provide further resources for understanding the host anti-viral network during SARS-CoV-2 infection and may help develop new countermeasure strategies.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Estudo de Associação Genômica Ampla , Multiômica , Antivirais/farmacologia
4.
J Med Virol ; 96(1): e29349, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185937

RESUMO

Although the COVID-19 pandemic has officially ended, the persistent challenge of long-COVID or post-acute COVID sequelae (PASC) continues to impact societies globally, highlighting the urgent need for ongoing research into its mechanisms and therapeutic approaches. Our team has recently developed a novel humanized ACE2 mouse model (hACE2ki) designed explicitly for long-COVID/PASC research. This model exhibits human ACE2 expression in tissue and cell-specific patterns akin to mouse Ace2. When we exposed young adult hACE2ki mice (6 weeks old) to various SARS-CoV-2 lineages, including WA, Delta, and Omicron, at a dose of 5 × 105 PFU/mouse via nasal instillation, the mice demonstrated distinctive phenotypes characterized by differences in viral load in the lung, trachea, and nasal turbinate, weight loss, and changes in pro-inflammatory cytokines and immune cell profiles in bronchoalveolar lavage fluid. Notably, no mortality was observed in this age group. Further, to assess the model's relevance for long-COVID studies, we investigated tau protein pathologies, which are linked to Alzheimer's disease, in the brains of these mice post SARS-CoV-2 infection. Our findings revealed the accumulation and longitudinal propagation of tau, confirming the potential of our hACE2ki mouse model for preclinical studies of long-COVID.


Assuntos
COVID-19 , Animais , Humanos , Camundongos , Adulto Jovem , Enzima de Conversão de Angiotensina 2/genética , Modelos Animais de Doenças , Progressão da Doença , Pandemias , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2
5.
Stem Cell Reports ; 19(1): 54-67, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38134925

RESUMO

Interspecies chimeras offer great potential for regenerative medicine and the creation of human disease models. Whether human pluripotent stem cell-derived neurons in an interspecies chimera can differentiate into functional neurons and integrate into host neural circuity is not known. Here, we show, using Engrailed 1 (En1) as a development niche, that human naive-like embryonic stem cells (ESCs) can incorporate into embryonic and adult mouse brains. Human-derived neurons including tyrosine hydroxylase (TH)+ neurons integrate into the mouse brain at low efficiency. These TH+ neurons have electrophysiologic properties consistent with their human origin. In addition, these human-derived neurons in the mouse brain accumulate pathologic phosphorylated α-synuclein in response to α-synuclein preformed fibrils. Optimization of human/mouse chimeras could be used to study human neuronal differentiation and human brain disorders.


Assuntos
Células-Tronco Embrionárias Humanas , Células-Tronco Pluripotentes , Adulto , Humanos , Camundongos , Animais , Neurônios Dopaminérgicos , alfa-Sinucleína , Quimerismo , Diferenciação Celular/fisiologia
6.
Adv Sci (Weinh) ; 11(10): e2305554, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38143270

RESUMO

Acknowledging the neurological symptoms of COVID-19 and the long-lasting neurological damage even after the epidemic ends are common, necessitating ongoing vigilance. Initial investigations suggest that extracellular vesicles (EVs), which assist in the evasion of the host's immune response and achieve immune evasion in SARS-CoV-2 systemic spreading, contribute to the virus's attack on the central nervous system (CNS). The pro-inflammatory, pro-coagulant, and immunomodulatory properties of EVs contents may directly drive neuroinflammation and cerebral thrombosis in COVID-19. Additionally, EVs have attracted attention as potential candidates for targeted therapy in COVID-19 due to their innate homing properties, low immunogenicity, and ability to cross the blood-brain barrier (BBB) freely. Mesenchymal stromal/stem cell (MSCs) secreted EVs are widely applied and evaluated in patients with COVID-19 for their therapeutic effect, considering the limited antiviral treatment. This review summarizes the involvement of EVs in COVID-19 neuropathology as carriers of SARS-CoV-2 or other pathogenic contents, as predictors of COVID-19 neuropathology by transporting brain-derived substances, and as therapeutic agents by delivering biotherapeutic substances or drugs. Understanding the diverse roles of EVs in the neuropathological aspects of COVID-19 provides a comprehensive framework for developing, treating, and preventing central neuropathology and the severe consequences associated with the disease.


Assuntos
COVID-19 , Vesículas Extracelulares , Humanos , SARS-CoV-2 , Encéfalo , Barreira Hematoencefálica
7.
Pharmaceutics ; 15(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38139997

RESUMO

Parkinson's Disease (PD) is a neurodegenerative disease characterized by the progressive loss of dopaminergic neurons of the substantia nigra pars compacta with a reduction in dopamine concentration in the striatum. It is a substantial loss of dopaminergic neurons that is responsible for the classic triad of PD symptoms, i.e., resting tremor, muscular rigidity, and bradykinesia. Several current therapies for PD may only offer symptomatic relief and do not address the underlying neurodegeneration of PD. The recent developments in cellular reprogramming have enabled the development of previously unachievable cell therapies and patient-specific modeling of PD through Induced Pluripotent Stem Cells (iPSCs). iPSCs possess the inherent capacity for pluripotency, allowing for their directed differentiation into diverse cell lineages, such as dopaminergic neurons, thus offering a promising avenue for addressing the issue of neurodegeneration within the context of PD. This narrative review provides a comprehensive overview of the effects of dopamine on PD patients, illustrates the versatility of iPSCs and their regenerative abilities, and examines the benefits of using iPSC treatment for PD as opposed to current therapeutic measures. In means of providing a treatment approach that reinforces the long-term survival of the transplanted neurons, the review covers three supplementary avenues to reinforce the potential of iPSCs.

8.
Foods ; 12(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38002210

RESUMO

Combining deep learning and hyperspectral imaging (HSI) has proven to be an effective approach in the quality control of medicinal and edible plants. Nonetheless, hyperspectral data contains redundant information and highly correlated characteristic bands, which can adversely impact sample identification. To address this issue, we proposed an enhanced one-dimensional convolutional neural network (1DCNN) with an attention mechanism. Given an intermediate feature map, two attention modules are constructed along two separate dimensions, channel and spectral, and then combined to enhance relevant features and to suppress irrelevant ones. Validated by Fritillaria datasets, the results demonstrate that an attention-enhanced 1DCNN model outperforms several machine learning algorithms and shows consistent improvements over a vanilla 1DCNN. Notably under VNIR and SWIR lenses, the model obtained 98.97% and 99.35% for binary classification between Fritillariae Cirrhosae Bulbus (FCB) and other non-FCB species, respectively. Additionally, it still achieved an extraordinary accuracy of 97.64% and 98.39% for eight-category classification among Fritillaria species. This study demonstrated the application of HSI with artificial intelligence can serve as a reliable, efficient, and non-destructive quality control method for authenticating Fritillaria species. Moreover, our findings also illustrated the great potential of the attention mechanism in enhancing the performance of the vanilla 1DCNN method, providing reference for other HSI-related quality controls of plants with medicinal and edible uses.

9.
Front Plant Sci ; 14: 1271320, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954990

RESUMO

Accurate assessment of isoflavone and starch content in Puerariae Thomsonii Radix (PTR) is crucial for ensuring its quality. However, conventional measurement methods often suffer from time-consuming and labor-intensive procedures. In this study, we propose an innovative and efficient approach that harnesses hyperspectral imaging (HSI) technology and deep learning (DL) to predict the content of isoflavones (puerarin, puerarin apioside, daidzin, daidzein) and starch in PTR. Specifically, we develop a one-dimensional convolutional neural network (1DCNN) model and compare its predictive performance with traditional methods, including partial least squares regression (PLSR), support vector regression (SVR), and CatBoost. To optimize the prediction process, we employ various spectral preprocessing techniques and wavelength selection algorithms. Experimental results unequivocally demonstrate the superior performance of the DL model, achieving exceptional performance with mean coefficient of determination (R2) values surpassing 0.9 for all components. This research underscores the potential of integrating HSI technology with DL methods, thereby establishing the feasibility of HSI as an efficient and non-destructive tool for predicting the content of isoflavones and starch in PTR. Moreover, this methodology holds great promise for enhancing efficiency in quality control within the food industry.

10.
ACS Nano ; 17(22): 22527-22538, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37933888

RESUMO

Idiopathic pulmonary fibrosis is a chronic and highly lethal lung disease that largely results from oxidative stress; however, effective antioxidant therapy by targeting oxidative stress pathogenesis is still lacking. The big challenge is to develop an ideal antioxidant material with superior antifibrotic effects. Herein, we report that V4C3 nanosheets (NSs) can serve as a potential antioxidant for treatment of pulmonary fibrosis by scavenging reactive oxygen and nitrogen species. Interestingly, subtle autoxidation can adjust the valence composition of V4C3 NSs and significantly improve their antioxidant behavior. Valence engineering triggers multiple antioxidant mechanisms including electron transfer, H atom transfer, and enzyme-like catalysis, thus endowing V4C3 NSs with broad-spectrum, high-efficiency, and persistent antioxidant capacity. Benefiting from antioxidant properties and good biocompatibility, V4C3 NSs can significantly prevent myofibroblast proliferation and extracellular matrix abnormality, thus alleviating the progression of bleomycin-induced pulmonary fibrosis in vivo by scavenging ROS, anti-inflammation, and rebuilding antioxidant defenses. This study not only provides an important strategy for designing excellent antioxidant nanomaterials, but also proposes a proof-of-concept demonstration for the treatment of pulmonary fibrosis and other oxidative stress-related diseases.


Assuntos
Fibrose Pulmonar , Humanos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Pulmão/metabolismo , Vanádio , Estresse Oxidativo , Compostos Orgânicos , Espécies Reativas de Oxigênio/farmacologia
11.
EMBO Rep ; 24(11): e56166, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37870275

RESUMO

ZNF746 was identified as parkin-interacting substrate (PARIS). Investigating its pathophysiological properties, we find that PARIS undergoes liquid-liquid phase separation (LLPS) and amorphous solid formation. The N-terminal low complexity domain 1 (LCD1) of PARIS is required for LLPS, whereas the C-terminal prion-like domain (PrLD) drives the transition from liquid to solid phase. In addition, we observe that poly(ADP-ribose) (PAR) strongly binds to the C-terminus of PARIS near the PrLD, accelerating its LLPS and solidification. N-Methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced PAR formation leads to PARIS oligomerization in human iPSC-derived dopaminergic neurons that is prevented by the PARP inhibitor, ABT-888. Furthermore, SDS-resistant PARIS species are observed in the substantia nigra (SN) of aged mice overexpressing wild-type PARIS, but not with a PAR binding-deficient PARIS mutant. PARIS solidification is also found in the SN of mice injected with preformed fibrils of α-synuclein (α-syn PFF) and adult mice with a conditional knockout (KO) of parkin, but not if α-syn PFF is injected into mice deficient for PARP1. Herein, we demonstrate that PARIS undergoes LLPS and PAR-mediated solidification in models of Parkinson's disease.


Assuntos
Doença de Parkinson , Poli Adenosina Difosfato Ribose , Animais , Humanos , Camundongos , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
12.
Molecules ; 28(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37687257

RESUMO

Turtle shell (Chinemys reecesii) is a prized traditional Chinese dietary therapy, and the growth year of turtle shell has a significant impact on its quality attributes. In this study, a hyperspectral imaging (HSI) technique combined with a proposed deep learning (DL) network algorithm was investigated for the objective determination of the growth year of turtle shells. The acquisition of hyperspectral images was carried out in the near-infrared range (948.72-2512.97 nm) from samples spanning five different growth years. To fully exploit the spatial and spectral information while reducing redundancy in hyperspectral data simultaneously, three modules were developed. First, the spectral-spatial attention (SSA) module was developed to better protect the spectral correlation among spectral bands and capture fine-grained spatial information of hyperspectral images. Second, the 3D convolutional neural network (CNN), more suitable for the extracted 3D feature map, was employed to facilitate the joint spatial-spectral feature representation. Thirdly, to overcome the constraints of convolution kernels as well as better capture long-range correlation between spectral bands, the transformer encoder (TE) module was further designed. These modules were harmoniously orchestrated, driven by the need to effectively leverage both spatial and spectral information within hyperspectral data. They collectively enhance the model's capacity to extract joint spatial and spectral features to discern growth years accurately. Experimental studies demonstrated that the proposed model (named SSA-3DTE) achieved superior classification accuracy, with 98.94% on average for five-category classification, outperforming traditional machine learning methods using only spectral information and representative deep learning methods. Also, ablation experiments confirmed the effectiveness of each module to improve performance. The encouraging results of this study revealed the potentiality of HSI combined with the DL algorithm as an efficient and non-destructive method for the quality control of turtle shells.


Assuntos
Tartarugas , Animais , Algoritmos , Imageamento Hiperespectral , Tartarugas/crescimento & desenvolvimento
13.
Signal Transduct Target Ther ; 8(1): 292, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37544956

RESUMO

Chronic pain is often associated with cognitive decline, which could influence the quality of the patient's life. Recent studies have suggested that Toll-like receptor 3 (TLR3) is crucial for memory and learning. Nonetheless, the contribution of TLR3 to the pathogenesis of cognitive decline after chronic pain remains unclear. The level of TLR3 in hippocampal neurons increased in the chronic constriction injury (CCI) group than in the sham group in this study. Importantly, compared to the wild-type (WT) mice, TLR3 knockout (KO) mice and TLR3-specific neuronal knockdown mice both displayed improved cognitive function, reduced levels of inflammatory cytokines and neuronal apoptosis and attenuated injury to hippocampal neuroplasticity. Notably, extracellular RNAs (exRNAs), specifically double-stranded RNAs (dsRNAs), were increased in the sciatic nerve, serum, and hippocampus after CCI. The co-localization of dsRNA with TLR3 was also increased in hippocampal neurons. And the administration of poly (I:C), a dsRNA analog, elevated the levels of dsRNAs and TLR3 in the hippocampus, exacerbating hippocampus-dependent memory. In additon, the dsRNA/TLR3 inhibitor improved cognitive function after CCI. Together, our findings suggested that exRNAs, particularly dsRNAs, that were present in the condition of chronic neuropathic pain, activated TLR3, initiated downstream inflammatory and apoptotic signaling, caused damage to synaptic plasticity, and contributed to the etiology of cognitive impairment after chronic neuropathic pain.


Assuntos
Dor Crônica , Disfunção Cognitiva , Neuralgia , Camundongos , Animais , Dor Crônica/genética , Dor Crônica/complicações , Receptor 3 Toll-Like/genética , Neuralgia/genética , Neuralgia/patologia , Disfunção Cognitiva/genética , Camundongos Knockout , RNA de Cadeia Dupla
14.
bioRxiv ; 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37293032

RESUMO

The spread of prion-like protein aggregates is believed to be a common driver of pathogenesis in many neurodegenerative diseases. Accumulated tangles of filamentous Tau protein are considered pathogenic lesions of Alzheimer's disease (AD) and related Tauopathies, including progressive supranuclear palsy, and corticobasal degeneration. Tau pathologies in these illnesses exhibits a clear progressive and hierarchical spreading pattern that correlates with disease severity1,2. Clinical observation combined with complementary experimental studies3,4 have shown that Tau preformed fibrils (PFF) are prion-like seeds that propagate pathology by entering cells and templating misfolding and aggregation of endogenous Tau. While several receptors of Tau are known, they are not specific to the fibrillar form of Tau. Moreover, the underlying cellular mechanisms of Tau PFF spreading remains poorly understood. Here, we show that the lymphocyte-activation gene 3 (Lag3) is a cell surface receptor that binds to PFF, but not monomer, of Tau. Deletion of Lag3 or inhibition of Lag3 in primary cortical neurons significantly reduces the internalization of Tau PFF and subsequent Tau propagation and neuron-to-neuron transmission. Propagation of Tau pathology and behavioral deficits induced by injection of Tau PFF in the hippocampus and overlying cortex are attenuated in mice lacking Lag3 selectively in neurons. Our results identify neuronal Lag3 as a receptor of pathologic Tau in the brain, and for AD and related Tauopathies a therapeutic target.

15.
J Plast Reconstr Aesthet Surg ; 82: 229-234, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37201313

RESUMO

BACKGROUND: Because of the various types and complexity of congenital tragal malformation, tragal reconstruction is one of the most challenging objects in otoplasty. This study aimed to introduce a surgical technique of cartilage transposition and anchoring that was used to construct a cartilage framework for natural tragus reconstruction. METHODS: A retrospective study was performed for 49 patients who underwent cartilage transposition and anchoring from January 2020 to August 2022. Gender, age, malformation, complication, operation record, preoperative and postoperative photograph, score of esthetic outcomes (4 = excellent, 3 = good, 2 = fair, 1 = poor), and Vancouver Scar Assessment score were reviewed. RESULTS: Twenty-six boys and 23 girls with an average age of 35.79 ± 32.97 months underwent revision. The follow-up time was 13.87 ± 6.57 months. No complications were noted. The average score of esthetic outcomes and the Vancouver Scar Assessment score were 3.94 and 0.08 in the postoperative period, respectively. The overall effect was satisfactory. CONCLUSIONS: Postoperative results showed that cartilage transposition and anchoring were effective techniques for the reconstruction of congenital tragal malformation. The use of cartilage and fascia tissue around the tragus to fill up the depression and reconstruct the tragus were the emphases. The remolded tragus showed less scars and had the similar appearance like the natural tragus of the patient.


Assuntos
Pavilhão Auricular , Procedimentos de Cirurgia Plástica , Masculino , Feminino , Humanos , Criança , Lactente , Pré-Escolar , Estudos Retrospectivos , Cicatriz/cirurgia , Pavilhão Auricular/cirurgia , Cartilagem/cirurgia
16.
Oncogene ; 42(20): 1672-1684, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020040

RESUMO

Ovarian cancer is the leading cause of death among gynecological malignancies. Checkpoint blockade immunotherapy has so far only shown modest efficacy in ovarian cancer and platinum-based chemotherapy remains the front-line treatment. Development of platinum resistance is one of the most important factors contributing to ovarian cancer recurrence and mortality. Through kinome-wide synthetic lethal RNAi screening combined with unbiased datamining of cell line platinum response in CCLE and GDSC databases, here we report that Src-Related Kinase Lacking C-Terminal Regulatory Tyrosine And N-Terminal Myristylation Sites (SRMS), a non-receptor tyrosine kinase, is a novel negative regulator of MKK4-JNK signaling under platinum treatment and plays an important role in dictating platinum efficacy in ovarian cancer. Suppressing SRMS specifically sensitizes p53-deficient ovarian cancer cells to platinum in vitro and in vivo. Mechanistically, SRMS serves as a "sensor" for platinum-induced ROS. Platinum treatment-induced ROS activates SRMS, which inhibits MKK4 kinase activity by directly phosphorylating MKK4 at Y269 and Y307, and consequently attenuates MKK4-JNK activation. Suppressing SRMS leads to enhanced MKK4-JNK-mediated apoptosis by inhibiting MCL1 transcription, thereby boosting platinum efficacy. Importantly, through a "drug repurposing" strategy, we uncovered that PLX4720, a small molecular selective inhibitor of B-RafV600E, is a novel SRMS inhibitor that can potently boost platinum efficacy in ovarian cancer in vitro and in vivo. Therefore, targeting SRMS with PLX4720 holds the promise to improve the efficacy of platinum-based chemotherapy and overcome chemoresistance in ovarian cancer.


Assuntos
Neoplasias Ovarianas , Platina , Humanos , Feminino , Espécies Reativas de Oxigênio , Platina/farmacologia , Platina/uso terapêutico , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Quinases da Família src/metabolismo , Resistencia a Medicamentos Antineoplásicos
17.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(3): 343-347, 2023 Mar 15.
Artigo em Chinês | MEDLINE | ID: mdl-36940994

RESUMO

Objective: To investigate the effectiveness of autologous nano-fat mixed granule fat transplantation in the treatment of facial soft tissue dysplasia in children with mild hemifacial microsomia (HFM). Methods: A total of 24 children with Pruzansky-Kaban type Ⅰ HFM were admitted between July 2016 and December 2020. Among them, 12 children were treated with autologous nano-fat mixed granule fat (1∶1) transplantation as study group and 12 with autologous granule fat transplantation as control group. There was no significant difference in gender, age, and affected side between groups ( P>0.05). The child's face was divided into region Ⅰ(mental point-mandibular angle-oral angle), region Ⅱ (mandibular angle-earlobe-lateral border of the nasal alar-oral angle), region Ⅲ (earlobe-lateral border of the nasal alar-inner canthus-foot of ear wheel). Based on the preoperative maxillofacial CT scan+three-dimensional reconstruction data, the differences of soft tissue volume between the healthy and affected sides in the 3 regions were calculated by Mimics software to determine the amount of autologous fat extraction or grafting. The distances between mandibular angle and oral angle (mandibular angle-oral angle), between mandibular angle and outer canthus (mandibular angle-outer canthus), and between earlobe and lateral border of the nasal alar (earlobe-lateral border of the nasal alar), and the soft tissue volumes in regions Ⅰ, Ⅱ, and Ⅲ of healthy and affected sides were measured at 1 day before operation and 1 year after operation. The differences between healthy and affected sides of the above indicators were calculated as the evaluation indexes for statistical analysis. At 1 year after operation, the parents, the surgeons, and the nurses in the operation group made a self-assessment of satisfaction according to the frontal photos of the children before and after operation. Results: The study group and the control group were injected with (28.61±8.59) and (29.33±8.08) mL of fat respectively, with no significant difference ( t=0.204, P=0.840). After injection, 1 child in the control group had a little subcutaneous induration, and no related complications occurred in the others. All children in both groups were followed up 1 year to 1 year and 6 months, with an average of 1 year and 4 months in the study group and 1 year and 3 months in the control group. At 1 year after operation, the asymmetry of the healthy and affected sides improved in both groups; the satisfactions of parents, surgeons, and nurses in the study group were all 100% (12/12), while those of the control group were 100% (12/12), 83% (10/12), and 92% (11/12), respectively. The differences between healthy and affected sides in mandibular angle-oral angle, mandibular angle-outer canthus, earlobe-lateral border of the nasal alar, and the soft tissue volume in 3 regions of the two groups after operation were significantly smaller than those before operation ( P<0.05). There was no significant difference in the above indexes between the two groups before operation ( P>0.05). After operation, all indexes were significantly lower in study group than in control group ( P<0.05). Conclusion: Autologous nano-fat mixed granule fat transplantation and autologous granule fat transplantation can both improve the facial soft tissue dysplasia in children with mild HFM, and the former is better than the latter.


Assuntos
Síndrome de Goldenhar , Humanos , Criança , Síndrome de Goldenhar/cirurgia , Estudos Retrospectivos , Mandíbula/cirurgia , Nariz , Tomografia Computadorizada por Raios X , Assimetria Facial/cirurgia
18.
Sensors (Basel) ; 23(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36772488

RESUMO

For the past several years, there has been an increasing focus on deep learning methods applied into computational pulse diagnosis. However, one factor restraining its development lies in the small wrist pulse dataset, due to privacy risks or lengthy experiments cost. In this study, for the first time, we address the challenging by presenting a novel one-dimension generative adversarial networks (GAN) for generating wrist pulse signals, which manages to learn a mapping strategy from a random noise space to the original wrist pulse data distribution automatically. Concretely, Wasserstein GAN with gradient penalty (WGAN-GP) is employed to alleviate the mode collapse problem of vanilla GANs, which could be able to further enhance the performance of the generated pulse data. We compared our proposed model performance with several typical GAN models, including vanilla GAN, deep convolutional GAN (DCGAN) and Wasserstein GAN (WGAN). To verify the feasibility of the proposed algorithm, we trained our model with a dataset of real recorded wrist pulse signals. In conducted experiments, qualitative visual inspection and several quantitative metrics, such as maximum mean deviation (MMD), sliced Wasserstein distance (SWD) and percent root mean square difference (PRD), are examined to measure performance comprehensively. Overall, WGAN-GP achieves the best performance and quantitative results show that the above three metrics can be as low as 0.2325, 0.0112 and 5.8748, respectively. The positive results support that generating wrist pulse data from a small ground truth is possible. Consequently, our proposed WGAN-GP model offers a potential innovative solution to address data scarcity challenge for researchers working with computational pulse diagnosis, which are expected to improve the performance of pulse diagnosis algorithms in the future.

19.
Sensors (Basel) ; 23(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36850727

RESUMO

Unsupervised band selection is an essential task to search for representative bands in hyperspectral dimension reduction. Most of existing studies utilize the inherent attribute of hyperspectral image (HSI) and acquire single optimal band subset while ignoring the diversity of subsets. Moreover, the ordered property in HSI is expected to be focused in order to avoid choosing redundant bands. In this paper, we proposed an unsupervised band selection method based on the multimodal evolutionary algorithm and subspace decomposition to alleviate the problems. To explore the diversity of band subsets, the multimodal evolutionary algorithm is first employed in spectral subspace decomposition to seek out multiple global or local solutions. Meanwhile, in view of ordered property, we concentrate more on increasing the difference between neighbor band subspaces. Furthermore, to utilize the obtained multiple diverse band subsets, an integrated utilization strategy is adopted to improve the predicted performance. Experimental results on three popular hyperspectral remote sensing datasets and one collected composition prediction dataset show the effectiveness of the proposed method, and the superiority over state-of-the-art methods on predicted accuracy.

20.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36768798

RESUMO

Synucleinopathies are a set of devastating neurodegenerative diseases that share a pathologic accumulation of the protein α-synuclein (α-syn). This accumulation causes neuronal death resulting in irreversible dementia, deteriorating motor symptoms, and devastating cognitive decline. While the etiology of these conditions remains largely unknown, microglia, the resident immune cells of the central nervous system (CNS), have been consistently implicated in the pathogenesis of synucleinopathies. Microglia are generally believed to be neuroprotective in the early stages of α-syn accumulation and contribute to further neurodegeneration in chronic disease states. While the molecular mechanisms by which microglia achieve this role are still being investigated, here we highlight the major findings to date. In this review, we describe how structural varieties of inherently disordered α-syn result in varied microglial receptor-mediated interactions. We also summarize which microglial receptors enable cellular recognition and uptake of α-syn. Lastly, we review the downstream effects of α-syn processing within microglia, including spread to other brain regions resulting in neuroinflammation and neurodegeneration in chronic disease states. Understanding the mechanism of microglial interactions with α-syn is vital to conceptualizing molecular targets for novel therapeutic interventions. In addition, given the significant diversity in the pathophysiology of synucleinopathies, such molecular interactions are vital in gauging all potential pathways of neurodegeneration in the disease state.


Assuntos
Sinucleinopatias , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Sinucleinopatias/metabolismo , Microglia/metabolismo , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA