Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569360

RESUMO

Mangoes (Mangifera indica L.) are an important kind of perennial fruit tree, but their biochemical testing method and transformation technology were insufficient and had not been rigorously explored. The protoplast technology is an excellent method for creating a rapid and effective tool for transient expression and transformation assays, particularly in plants that lack an Agrobacterium-mediated plant transformation system. This study optimized the conditions of the protoplast isolation and transformation system, which can provide a lot of help in the gene expression regulation study of mango. The most beneficial protoplast isolation conditions were 150 mg/mL of cellulase R-10 and 180 mg/mL of macerozyme R-10 in the digestion solution at pH 5.6 and 12 h of digestion time. The 0.16 M and 0.08 M mannitol in wash solution (WI) and suspension for counting (MMG), respectively, were optimal for the protoplast isolation yield. The isolated leaf protoplasts (~5.4 × 105 cells/10 mL) were transfected for 30 min mediated by 40% calcium-chloride-based polyethylene glycol (PEG)-4000-CaCl2, from which 84.38% of the protoplasts were transformed. About 0.08 M and 0.12 M of mannitol concentration in MMG and transfection solutions, respectively, were optimal for protoplast viability. Under the florescence signal, GFP was seen in the transformed protoplasts. This showed that the target gene was successfully induced into the protoplast and that it can be transcribed and translated. Experimental results in this paper show that our high-efficiency protoplast isolation and PEG-mediated transformation protocols can provide excellent new methods for creating a rapid and effective tool for the molecular mechanism study of mangoes.


Assuntos
Mangifera , Mangifera/genética , Protoplastos/metabolismo , Folhas de Planta/genética , Transfecção
2.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298190

RESUMO

Ananas comosus var. bracteatus (Ac. bracteatus) is a typical leaf-chimeric ornamental plant. The chimeric leaves are composed of central green photosynthetic tissue (GT) and marginal albino tissue (AT). The mosaic existence of GT and AT makes the chimeric leaves an ideal material for the study of the synergistic mechanism of photosynthesis and antioxidant metabolism. The daily changes in net photosynthetic rate (NPR) and stomatal conductance (SCT) of the leaves indicated the typical crassulacean acid metabolism (CAM) characteristic of Ac. bracteatus. Both the GT and AT of chimeric leaves fixed CO2 during the night and released CO2 from malic acid for photosynthesis during the daytime. The malic acid content and NADPH-ME activity of the AT during the night was significantly higher than that of GT, which suggests that the AT may work as a CO2 pool to store CO2 during the night and supply CO2 for photosynthesis in the GT during the daytime. Furthermore, the soluble sugar content (SSC) in the AT was significantly lower than that of GT, while the starch content (SC) of the AT was apparently higher than that of GT, indicating that AT was inefficient in photosynthesis but may function as a photosynthate sink to help the GT maintain high photosynthesis activity. Additionally, the AT maintained peroxide balance by enhancing the non-enzymatic antioxidant system and antioxidant enzyme system to avoid antioxidant damage. The enzyme activities of reductive ascorbic acid (AsA) and the glutathione (GSH) cycle (except DHAR) and superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were enhanced, apparently to make the AT grow normally. This study indicates that, although the AT of the chimeric leaves was inefficient at photosynthesis because of the lack of chlorophyll, it can cooperate with the GT by working as a CO2 supplier and photosynthate store to enhance the photosynthetic ability of GT to help chimeric plants grow well. Additionally, the AT can avoid peroxide damage caused by the lack of chlorophyll by enhancing the activity of the antioxidant system. The AT plays an active role in the normal growth of the chimeric leaves.


Assuntos
Ananas , Antioxidantes , Antioxidantes/metabolismo , Ananas/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese , Clorofila/metabolismo , Glutationa/metabolismo , Peróxidos/metabolismo , Folhas de Planta/metabolismo
3.
Biomed Pharmacother ; 160: 114384, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36764132

RESUMO

Bazi Bushen (BZBS), a traditional Chinese medicine, has been proven effective in the treatment of age-related disease in mouse models. However, whether its therapeutic effects are due to antiaging mechanism has not yet been explored. In the present study, we investigated the antiaging effects of BZBS in naturally aging mice by using behavioral tests, liver DNA methylome sequencing, methylation age estimation, and frailty index assessment. The methylome analysis revealed a decrease of mCpG levels in the aged mouse liver. BZBS treatment tended to restore age-associated methylation decline and prune the methylation pattern toward that of young mice. More importantly, BZBS significantly rejuvenated methylation age of the aged mice, which was computed by an upgraded DNA methylation clock. These results were consistent with enhanced memory and muscular endurance, as well as decreased frailty score and liver pathological changes. KEGG analysis together with aging-related database screening identified methylation-targeted pathways upon BZBS treatment, including oxidative stress, DNA repair, MAPK signaling, and inflammation. Upregulation of key effectors and their downstream effects on elevating Sod2 expression and diminishing DNA damage were further investigated. Finally, in vitro experiments with senescent HUVECs proved a direct effect of BZBS extracts on the regulation of methylation enzymes during cellular aging. In summary, our work has revealed for the first time the antiaging effects of BZBS by slowing the methylation aging. These results suggest that BZBS might have great potential to extend healthspan and also explored the mechanism of BZBS action in the treatment of age-related diseases.


Assuntos
Epigênese Genética , Fragilidade , Animais , Camundongos , Fragilidade/genética , Envelhecimento/genética , Metilação de DNA , Senescência Celular
4.
Front Microbiol ; 14: 1320202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260869

RESUMO

Purpose: The senescence-accelerated prone mouse 8 (SAMP8) is a widely used model for accelerating aging, especially in central aging. Mounting evidence indicates that the microbiota-gut-brain axis may be involved in the pathogenesis and progression of central aging-related diseases. This study aims to investigate whether Bazi Bushen capsule (BZBS) attenuates the deterioration of the intestinal function in the central aging animal model. Methods: In our study, the SAMP8 mice were randomly divided into the model group, the BZ-low group (0.5 g/kg/d BZBS), the BZ-high group (1 g/kg/d BZBS) and the RAPA group (2 mg/kg/d rapamycin). Age-matched SAMR1 mice were used as the control group. Next, cognitive function was detected through Nissl staining and two-photon microscopy. The gut microbiota composition of fecal samples was analyzed by 16S rRNA gene sequencing. The Ileum tissue morphology was observed by hematoxylin and eosin staining, and the intestinal barrier function was observed by immunofluorescence. The expression of senescence-associated secretory phenotype (SASP) factors, including P53, TNF-α, NF-κB, IL-4, IL-6, and IL-10 was measured by real-time quantitative PCR. Macrophage infiltration and the proliferation and differentiation of intestinal cells were assessed by immunohistochemistry. We also detected the inflammasome and pyroptosis levels in ileum tissue by western blotting. Results: BZBS improved the cognitive function and neuronal density of SAMP8 mice. BZBS also restored the intestinal villus structure and barrier function, which were damaged in SAMP8 mice. BZBS reduced the expression of SASP factors and the infiltration of macrophages in the ileum tissues, indicating a lower level of inflammation. BZBS enhanced the proliferation and differentiation of intestinal cells, which are essential for maintaining intestinal homeostasis. BZBS modulated the gut microbiota composition, by which BZBS inhibited the activation of inflammasomes and pyroptosis in the intestine. Conclusion: BZBS could restore the dysbiosis of the gut microbiota and prevent the deterioration of intestinal barrier function by inhibiting NLRP3 inflammasome-mediated pyroptosis. These results suggested that BZBS attenuated the cognitive aging of SAMP8 mice, at least partially, by targeting the microbiota-gut-brain axis.

5.
J Ethnopharmacol ; 255: 112738, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32147479

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Qian Yang Yu Yin Granule (QYYY) is a Chinese herbal formulation. It is used to treat hypertensive nephropathy for decades in China, but it is unknown that the exact mechanism of QYYY on hypertensive nephropathy. AIMS OF STUDY: The present study was to elucidate its epigenetic mechanism of QYYY on hypertensive nephropathy. MATERIALS AND METHODS: In the current study, HEK293T cells' proliferation induced by Ang II was chosen to observe epigenetic mechanisms of QYYY on renal damage. The cell proliferation was examined by MTT assays and ethynyldeoxyuridine analysis. Cell cycle analysis was performed. After treatment with QYYY, expression of Nicotinamide N-methyltransferase (NNMT), sirtuin1(SIRT1), S-adenosylhomocysteine(SAH), histone H3K4 methylation, and cortactin acetylation(acetyl-cortactin,ac-cortactin) were further investigated by western-blotting and real time PCR. DNA methylation was detected by ELISA. The study also observed the changes of SIRT1, SAH, H3K4 methylation, acetyl-cortactin when NNMT over-expressed by lentivirus transfection. Angiotensin II(Ang II) induced renal damage in spontaneously hypertensive rats(SHR). After eight weeks treatment of QYYY, blood pressure, serum and urine creatinine, and urinary microalbumin(mAlb) were assessed. The concentration of N1 -methylnicotinamide were detected by liquid chromatography with tandem mass spectrometry. The protein of NNMT, ac-cortactin, H3K3me3 were also assessed in vivo. RESULTS: QYYY inhibited HEK293T cells' proliferation, down-regulated the expression of NNMT, SAH, acetyl-cortactin and DNA methylation, up-regulated the expression of SIRT1, histone H3K4 trimethylation(H3K4me3). Over-expression of NNMT increased the expression of SAH and acetyl-cortactin, and reduced the expression of SIRT1 and H3K4me3. The study also demonstrated that QYYY promoted urinary creatinine excretion and reduced serum creatinine and urinary mAlb in SHR. QYYY decreased the concentration of N1 -methylnicotinamide in Ang II group. QYYY decreased the protein of NNMT, ac-cortactin and increased H3K4me3 in vivo. CONCLUSION: The results showed that QYYY alleviated renal impairment of SHR and inhibited HEK293T cells' proliferation induced by Ang II through the pathway of epigenetic mechanism linked to Nicotinamide N-Methyltransferase (NNMT) expression, including histone methylation, DNA methylation and acetyl-cortactin. This study unveiled a novel molecular mechanism by which QYYY controlled the progression of hypertensive nephropathy.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Epigênese Genética/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Nefropatias/prevenção & controle , Rim/efeitos dos fármacos , Nicotinamida N-Metiltransferase/metabolismo , Acetilação , Angiotensina II , Animais , Proliferação de Células/efeitos dos fármacos , Cortactina/metabolismo , Metilação de DNA/efeitos dos fármacos , Modelos Animais de Doenças , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Células HEK293 , Histonas/metabolismo , Humanos , Hipertensão/complicações , Hipertensão/enzimologia , Hipertensão/genética , Rim/enzimologia , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/enzimologia , Nefropatias/genética , Masculino , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , S-Adenosil-Homocisteína/metabolismo , Sirtuína 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA