Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Physiol Plant ; 176(2): e14238, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38488414

RESUMO

Malus sieversii is a precious apple germplasm resource. Browning of explants is one of the most important factors limiting the survival rate of plant tissue culture. In order to explore the molecular mechanism of the browning degree of different strains of Malus sieversii, we compared the dynamic changes of Malus sieversii and Malus robusta Rehd. during the whole browning process using a multi-group method. A total of 44 048 differentially expressed genes (DEGs) were identified by transcriptome analysis on the DNBSEQ-T7 sequencing platform. KEGG enrichment analysis showed that the DEGs were significantly enriched in the flavonoid biosynthesis pathway. In addition, metabonomic analysis showed that (-)-epicatechin, astragalin, chrysin, irigenin, isoquercitrin, naringenin, neobavaisoflavone and prunin exhibited different degrees of free radical scavenging ability in the tissue culture browning process, and their accumulation in different varieties led to differences in the browning degree among varieties. Comprehensive transcriptome and metabonomics analysis of the data related to flavonoid biosynthesis showed that PAL, 4CL, F3H, CYP73A, CHS, CHI, ANS, DFR and PGT1 were the key genes for flavonoid accumulation during browning. In addition, WGCNA analysis revealed a strong correlation between the known flavonoid structure genes and the selected transcriptional genes. Protein interaction predictions demonstrated that 19 transcription factors (7 MYBs and 12 bHLHs) and 8 flavonoid structural genes had targeted relationships. The results show that the interspecific differential expression of flavonoid genes is the key influencing factor of the difference in browning degree between Malus sieversii and Malus robusta Rehd., providing a theoretical basis for further study on the regulation of flavonoid biosynthesis.


Assuntos
Malus , Malus/genética , Malus/metabolismo , Multiômica , Flavonoides/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Regulação da Expressão Gênica de Plantas
2.
Funct Integr Genomics ; 24(1): 13, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236432

RESUMO

Malus baccata (L.) var. gracilis (Rehd.) has high ornamental value and breeding significance, and comparative chloroplast genome analysis was applied to facilitate genetic breeding for desired traits and resistance and provide insight into the phylogeny of this genus. Using data from whole-genome sequencing, a tetrameric chloroplast genome with a length of 159,992 bp and a total GC content of 36.56% was constructed. The M. baccata var. gracilis chloroplast genome consists of a large single-copy sequence (88,100 bp), a short single-copy region (19,186 bp), and two inverted repeat regions, IRa (26,353 bp) and IRb (26,353 bp). This chloroplast genome contains 112 annotated genes, including 79 protein-coding genes (nine multicopy), 29 tRNA genes (eight multicopy), and four rRNA genes (all multicopy). Calculating the relative synonymous codon usage revealed a total of 32 high-frequency codons, and the codons exhibited a biased usage pattern towards A/U as the ending nucleotide. Interspecific sequence comparison and boundary analysis revealed significant sequence variation in the vast single-copy region, as well as generally similar expansion and contraction of the SSC and IR regions for 10 analyzed Malus species. M. baccata var. gracilis and Malus hupehensis were grouped together into one branch based on phylogenetic analysis of chloroplast genome sequences. The chloroplast genome of Malus species provides an important foundation for species identification, genetic diversity analysis, and Malus chloroplast genetic engineering. Additionally, the results can facilitate the use of pendant traits to improve apple tree shape.


Assuntos
Genoma de Cloroplastos , Malus , Filogenia , Melhoramento Vegetal , Códon/genética
3.
J Hazard Mater ; 460: 132399, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37647659

RESUMO

The excessive application of chemical fertilizers and pesticides in apple orchards is responsible for high levels of manganese and copper in soil, and this poses a serious threat to soil health. We conducted a three-year field experiment to study the remediation effect and mechanism of fulvic acid on soil with excess manganese and copper. The exogenous application of fulvic acid significantly reduced the content of manganese and copper in soil and plants; increased the content of calcium; promoted the growth of apple plants; improved the fruit quality and yield of apple; increased the content of chlorophyll; increased the activity of superoxide dismutase, peroxidase, and catalase; and reduced the content of malondialdehyde. The number of soil culturable microorganisms, soil enzyme activity, soil microbial community diversity, and relative abundance of functional bacteria were increased, and the detoxification of the glutathione metabolism function was enhanced. The results of this study provide new insights that will aid the remediation of soil with excess manganese and copper using fulvic acid.


Assuntos
Malus , Metais Pesados , Cobre , Manganês , Metais Pesados/toxicidade
4.
Plant Biotechnol J ; 21(7): 1408-1425, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37031416

RESUMO

Stone cells are often present in pear fruit, and they can seriously affect the fruit quality when present in large numbers. The plant growth regulator NAA, a synthetic auxin, is known to play an active role in fruit development regulation. However, the genetic mechanisms of NAA regulation of stone cell formation are still unclear. Here, we demonstrated that exogenous application of 200 µM NAA reduced stone cell content and also significantly decreased the expression level of PbrNSC encoding a transcriptional regulator. PbrNSC was shown to bind to an auxin response factor, PbrARF13. Overexpression of PbrARF13 decreased stone cell content in pear fruit and secondary cell wall (SCW) thickness in transgenic Arabidopsis plants. In contrast, knocking down PbrARF13 expression using virus-induced gene silencing had the opposite effect. PbrARF13 was subsequently shown to inhibit PbrNSC expression by directly binding to its promoter, and further to reduce stone cell content. Furthermore, PbrNSC was identified as a positive regulator of PbrMYB132 through analyses of co-expression network of stone cell formation-related genes. PbrMYB132 activated the expression of gene encoding cellulose synthase (PbrCESA4b/7a/8a) and lignin laccase (PbrLAC5) binding to their promotors. As expected, overexpression or knockdown of PbrMYB132 increased or decreased stone cell content in pear fruit and SCW thickness in Arabidopsis transgenic plants. In conclusion, our study shows that the 'PbrARF13-PbrNSC-PbrMYB132' regulatory cascade mediates the biosynthesis of lignin and cellulose in stone cells of pear fruit in response to auxin signals and also provides new insights into plant SCW formation.


Assuntos
Arabidopsis , Pyrus , Frutas/metabolismo , Lignina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas
5.
ACS Omega ; 8(7): 6411-6422, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36844530

RESUMO

Apple replant disease (ARD) is common in apple production, which seriously affects the growth and development of apples. In this study, hydrogen peroxide with a bactericidal effect was used to treat the replanted soil, and the effects of different concentrations of hydrogen peroxide on replanted seedlings and soil microbiology were investigated in order to seek a green, clean way to control ARD. Five treatments were set up in this study: replanted soil (CK1), replanted soil with methyl bromide fumigation (CK2), replanted soil + 1.5% hydrogen peroxide (H1), replanted soil + 3.0% hydrogen peroxide (H2), and replanted soil + 4.5% hydrogen peroxide (H3). The results showed that hydrogen peroxide treatment improved replanted seedling growth and also inactivated a certain number of Fusarium, while the Bacillus, Mortierella, and Guehomyces also became more abundant in relative terms. The best results were obtained with replanted soil + 4.5% hydrogen peroxide (H3). Consequently, hydrogen peroxide applied to the soil can effectively prevent and control ARD.

6.
Plant J ; 113(6): 1295-1309, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36651024

RESUMO

Anthocyanins are important secondary metabolites in plants. They are important for human health because of their antioxidant activities and because their dietary intake reduces the incidence of cardiovascular and cerebrovascular diseases and tumors. The biosynthesis of anthocyanins and its regulation in fruits and vegetables is a global research hotspot. Compared with cultivated apples, the red-fleshed apple is a relatively new and popular commodity in the market. Previous studies on red-fleshed apples have focused on the basis for the high anthocyanin content and the transcriptional regulation of anthocyanin synthesis. In the present study, we focused on the mechanism of microRNA-mediated post-transcriptional regulation of anthocyanin synthesis in red-fleshed apples. We identified a microRNA (miRNA), designated mdm-miR858, that is specifically expressed in the flesh of apple fruit. The expression level of miR858 was significantly lower in red-fleshed apples than in white-fleshed apples. The overexpression of mdm-miR858 significantly inhibited anthocyanin accumulation, whereas the silencing of mdm-miR858 promoted anthocyanin synthesis in STTM858 transgenic apple calli. Further analyses showed that mdm-miR858 targets the transcription factor genes MdMYB9 and MdMYBPA1 to participate anthocyanin accumulation in apple. Our results also show that MdHY5, a transcription factor in the light signaling pathway, can bind to the promoter of mdm-miR858 to inhibit its transcription, thereby regulating anthocyanin synthesis. Based on our results, we describe a novel HY5-miR858-MYB loop involved in the modulation of anthocyanin biosynthesis. These findings provide new information about how plant miRNAs regulate anthocyanin anabolism and provide a basis for breeding new anthocyanin-rich, red-fleshed apple varieties.


Assuntos
Malus , Humanos , Malus/genética , Malus/metabolismo , Antocianinas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Frutas/genética , Frutas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Plants (Basel) ; 11(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36365421

RESUMO

Organic acids secreted by plants, such as p-hydroxybenzoic acid, ferulic acid, cinnamic acid, and benzoic acid, can inhibit seed germination and root growth. The effects of root and soil leaching liquor from orchards on the growth of M. hupehensis Rehd. seedlings under sand culture are studied; the seedlings are sampled at 15, 30, 45, and 60 d. Changes in the amount of root exudates are determined using HPLC. Low concentrations of root leaching liquor (A1) and soil leaching liquor (B1) significantly promoted plant growth and chlorophyll synthesis; high concentrations of root leaching liquor (A6) and soil leaching liquor (B4-6) inhibited growth. Low concentrations of soil leaching liquor had no significant effect on the POD, SOD, and CAT activities. A5-6 and B5-6 significantly decreased Fv/Fm and qP values, respectively, and increased NPQ values. All root and soil leaching liquor treatments inhibited the secretion of gallic acid, hydroxybenzoic acid, benzoic acid, and phloridzin, and promoted the secretion of caffeic acid. The root leaching liquor treatments inhibited the secretion of catechin and promoted the secretion of phloretin. The soil leaching liquor treatments promoted the secretion of cinnamic acid. The secretion of other phenolic acids is likely associated with the different concentrations of leaching liquor.

8.
J Fungi (Basel) ; 8(10)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36294637

RESUMO

Fusarium solani has often been isolated from replanted apple roots, suggesting that it is associated with apple replant disease. The mechanism underlying the ability of the mixed cropping of apple trees with Allium fistulosum L. to alleviate apple replant disease remains unclear. The aim of this study was to determine the pathogenicity of the Fusarium solani isolate HBH 08 isolated from diseased roots and the effect of A. fistulosum L. and its root secretions on Fusarium solani isolate HBH 08 and apple seedings. The field experiment showed that A. fistulosum L. not only significantly reduced the amount of the Fusarium solani isolate HBH 08 in replanted soil but also increased the biomass of the grafted apple seedlings. The GC-MS analysis indicated that dimethyl disulphide and diallyl disulphide were active molecules in the root exudates of A. fistulosum L. They inhibited the growth of the Fusarium solani isolate HBH 08 mycelium and decreased the number of spores germinated. In addition, these compounds reduced the amount of the Fusarium solani isolate HBH 08 under replanted conditions and promoted the growth of grafted apple seedlings. Overall, mixed cropping with A. fistulosum L. might be an effective approach for cultivating apple trees and controlling apple replant disease.

9.
BMC Plant Biol ; 22(1): 468, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180863

RESUMO

BACKGROUND: Cultivation of resistant rootstocks can effectively prevent apple replant disease (ARD), and grafting tests are an important means of evaluating the compatibility of rootstocks with scions. METHODS: The apple rootstocks 12-2 (self-named) and Malus hupehensis Rehd. (PYTC) were planted in a replanted 20-year-old apple orchard. The two rootstocks were grafted with scions of 13 apple varieties. Multiple aboveground physiological parameters of the grafted combinations were measured and evaluated to verify the grafting affinity of 12-2 with the scions as compared to Malus hupehensis Rehd. (PYTC). RESULTS: The graft survival rate and graft interface healing of 12-2 did not differ significantly from those of PYTC. Mechanical strength tests of the grafted interfaces showed that some mechanical strength indices of Redchief, Jonagold, Starking, Goldspur and Yinv apple varieties were significantly higher when they were grafted onto 12-2 compared to the PYTC control. The height and diameter of shoots and the relative chlorophyll content, photosynthetic and fluorescence parameters, antioxidant enzyme activities and malondialdehyde content of leaves showed that Fuji 2001, Tengmu No.1, RedChief, Gala, USA8, and Shoufu1 grew similarly on the two rootstocks, but Tianhong 2, Lvguang, Jonagold, Starking, Goldspur, Yinv and Luli grew better when grafted onto 12-2 than onto the PYTC control. The rootstock 12-2, therefore, showed good grafting affinity. CONCLUSION: These results provide experimental materials and theoretical guidance for the cultivation of a new grafting compatible rootstock to the 13 studied apple cultivars.


Assuntos
Malus , Antioxidantes , Clorofila , Malondialdeído , Malus/genética , Folhas de Planta
10.
J Hazard Mater ; 440: 129786, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36007363

RESUMO

Fusarium and phenolic acids in apple replant soil have deleterious effects on soil, which affects the growth of young replanted apple trees. Here, we studied the effects of different chemical fumigants (metham sodium, dazomet, calcium cyanamide, 1,3-dichloropropene, and methyl bromide) on Fusarium and phenolic acids in soil. The chemical fumigants disturbed the apple replant soil microbial community to different degrees in the order from highest to the lowest as methyl bromide > 1,3-dichloropropene > dazomet > metham sodium > calcium cyanamide. Compared with the control, the total numbers of Operational Taxonomic Unit (OTU) were 104.63 % and 9.38 % lower in the methyl bromide and calcium cyanamide treatments, respectively while the average contents of Fusarium were 88.04 % and 59.18% lower in these treatments, respectively. Higher disturbance degrees resulted in a slower recovery rate of the soil microbial community, which facilitated the transformation of the soil into a disease-suppressing state. During the recovery process, the roots recruited Streptomyces OTU2796 and Bacillus OTU2243, which alleviated Fusarium-induced stress via the synthesis of polyketones and macrolides. The roots also recruited Sphingomonas OTU3488, OTU5572, and OTU8147, which alleviated phenolic acid-induced stress through the degradation of benzoate and polycyclic aromatic hydrocarbons.


Assuntos
Fusarium , Malus , Microbiota , Praguicidas , Hidrocarbonetos Policíclicos Aromáticos , Compostos Alílicos , Cianamida , Hidrocarbonetos Bromados , Hidrocarbonetos Clorados , Hidroxibenzoatos , Macrolídeos , Praguicidas/química , Solo , Tiadiazinas , Tiocarbamatos
11.
BMC Plant Biol ; 22(1): 385, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918651

RESUMO

BACKGROUND: Apple (Malus domestica Borkh.) is an important economic crop. The pathological effects of Fusarium solani, a species complex of soilborne pathogens, on the root systems of apple plants was unknown. It was unclear how mycorrhizal apple seedlings resist infection by F. solani. The transcriptional profiles of mycorrhizal and non-mycorrhizal plants infected by F. solani were compared using RNA-Seq. RESULTS: Infection with F. solani significantly reduced the dry weight of apple roots, and the roots of mycorrhizal apple plants were less damaged when the plants were infected with F. solani. They also had enhanced activity of antioxidant enzymes and a reduction in the oxidation of membrane lipids. A total of 1839 differentially expressed genes (DEGs) were obtained after mycorrhizal and non-mycorrhizal apple plants were infected with F. solani. A gene ontogeny (GO) analysis showed that most of the DEGs were involved in the binding of ADP and calcium ions. In addition, based on a MapMan analysis, a large number of DEGs were found to be involved in the response of mycorrhizal plants to stress. Among them, the overexpressed transcription factor MdWRKY40 significantly improved the resistance of the apple 'Orin' callus to F. solani and the expression of the resistance gene MdGLU by binding the promoter of MdGLU. CONCLUSION: This paper outlines how the inoculation of apple seedlings roots by arbuscular mycorrhizal fungi responded to infection with F. solani at the transcriptional level. In addition, MdWRKY40 played an important role in the resistance of mycorrhizal apple seedlings to infection with F. solani.


Assuntos
Fusarium , Malus , Micorrizas , Malus/genética , Malus/microbiologia , Micorrizas/fisiologia , Plântula/genética , Plântula/microbiologia
12.
BMC Genomics ; 23(1): 484, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35780085

RESUMO

BACKGROUND: Apple replant disease is a soilborne disease caused by Fusarium proliferatum f. sp. malus domestica strain MR5 (abbreviated hereafter as Fpmd MR5) in China. This pathogen causes root tissue rot and wilting leaves in apple seedlings, leading to plant death. A comparative transcriptome analysis was conducted using the Illumina Novaseq platform to identify the molecular defense mechanisms of the susceptible M.26 and the resistant M9T337 apple rootstocks to Fpmd MR5 infection. RESULTS: Approximately 518.1 million high-quality reads were generated using RNA sequencing (RNA-seq). Comparative analysis between the mock-inoculated and Fpmd MR5 infected apple rootstocks revealed 28,196 significantly differentially expressed genes (DEGs), including 14,572 up-regulated and 13,624 down-regulated genes. Among them, the transcriptomes in the roots of the susceptible genotype M.26 were reflected by overrepresented DEGs. MapMan analysis indicated that a large number of DEGs were involved in the response of apple plants to Fpmd MR5 stress. The important functional groups identified via gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were responsible for fundamental biological regulation, secondary metabolism, plant-pathogen recognition, and plant hormone signal transduction (ethylene and jasmonate). Furthermore, the expression of 33 up-regulated candidate genes (12 related to WRKY DNA-binding proteins, one encoding endochitinase, two encoding beta-glucosidases, ten related to pathogenesis-related proteins, and eight encoding ethylene-responsive transcription factors) were validated by quantitative real-time PCR. CONCLUSION: RNA-seq profiling was performed for the first time to analyze response of apple root to Fpmd MR5 infection. We found that the production of antimicrobial compounds and antioxidants enhanced plant resistance to pathogens, and pathogenesis-related protein (PR10 homologs, chitinase, and beta-glucosidase) may play unique roles in the defense response. These results provide new insights into the mechanisms of the apple root response to Fpmd MR5 infection.


Assuntos
Malus , Etilenos , Fusarium , Regulação da Expressão Gênica de Plantas , Malus/genética , Doenças das Plantas/genética , Transcriptoma
13.
J Agric Food Chem ; 70(29): 8942-8954, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35835727

RESUMO

Exogenous application of nitrogen (N) and phosphate (P) has been demonstrated to alleviate apple replant disease (ARD). Yet, the effect of controlled-release diammonium phosphate (C-DAP), which continuously supply N and P for ARD control, is still poorly understood. Applying C-DAP markedly alleviated the typical symptoms of ARD. C-DAP maintained soil N and P at relatively high and stable levels during the entire growth period of the replanted seedlings, thus, limiting the copy number of the four key pathogenic Fusarium species that cause ARD. Particularly, continuously supplying N and P by C-DAP established a higher fungal diversity than that of conventional diammonium phosphate and induced the fungal community to be more similar to fumigated soil. The positive effect of C-DAP originated from the synergistic effects of regulating microorganisms and enhancing the resistance of the plant caused by a continuous nutrient supply. These findings provide a new perspective in the management of soil-borne diseases.


Assuntos
Malus , Microbiota , Preparações de Ação Retardada , Fosfatos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Solo , Microbiologia do Solo
14.
Plant Methods ; 18(1): 84, 2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717244

RESUMO

BACKGROUND: Elaeagnus angustifolia L. is a deciduous tree in the family Elaeagnaceae. It is widely used to study abiotic stress tolerance in plants and to improve desertification-affected land because of its ability to withstand diverse types of environmental stress, such as drought, salt, cold, and wind. However, no studies have examined the mechanisms underlying the resistance of E. angustifolia to environmental stress and its adaptive evolution. METHODS: Here, we used PacBio, Hi-C, resequencing, and RNA-seq to construct the genome and transcriptome of E. angustifolia and explore its adaptive evolution. RESULTS: The reconstructed genome of E. angustifolia was 526.80 Mb, with a contig N50 of 12.60 Mb and estimated divergence time of 84.24 Mya. Gene family expansion and resequencing analyses showed that the evolution of E. angustifolia was closely related to environmental conditions. After exposure to salt stress, GO pathway analysis showed that new genes identified from the transcriptome were related to ATP-binding, metal ion binding, and nucleic acid binding. CONCLUSION: The genome sequence of E. angustifolia could be used for comparative genomic analyses of Elaeagnaceae family members and could help elucidate the mechanisms underlying the response of E. angustifolia to drought, salt, cold, and wind stress. Generally, these results provide new insights that could be used to improve desertification-affected land.

15.
Front Microbiol ; 13: 839484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308362

RESUMO

In this study, an endophytic phlorizin-degrading Bacillus licheniformis XNRB-3 was isolated from the root tissue of healthy apple trees, and its control effect on apple replant disease (ARD) and how it alleviates the pathogen pressure via changes in soil microbiomes were studied. The addition of strain XNRB-3 in Fusarium infested soils significantly reduced the number of pathogens in the soil, thus resulting in a lower disease incidence, and the relative control effect on Fusarium oxysporum reached the highest of 66.11%. The fermentation broth can also protect the roots of the plants from Fusarium oxysporum, Fusarium moniliforme, Fusarium proliferatum, and Fusarium solani infection. These antagonistic effects were further validated using an in vitro assay in which the pathogen control was related to growth and spore germination inhibition via directly secreted antimicrobial substances and indirectly affecting the growth of pathogens. The secreted antimicrobial substances were identified using gas chromatography-mass spectrometry (GC-MS) technology. Among them, alpha-bisabolol and 2,4-di-tert-butylphenol had significant inhibitory effects on many planted pathogenic fungi. Butanedioic acid, monomethyl ester, and dibutyl phthalate promoted root development of Arabidopsis plants. Strain XNRB-3 has multifarious plant growth promoting traits and antagonistic potential. In pot and field experiments, the addition of strain XNRB-3 significantly promoted the growth of plants, and the activity of enzymes related to disease resistance [superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)] was also significantly enhanced. It also reduced the abundance of four species of Fusarium and the content of phenolic acids in the rhizosphere soil, improved soil microbial community structure and nutritional conditions, and increased soil microbial diversity and activity, as well as the soil enzyme activity. The above results indicated that B. licheniformis XNRB-3 could be developed into a promising biocontrol and plant-growth-promoting agent.

16.
ACS Omega ; 7(9): 7920-7930, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35284737

RESUMO

A two-year field experiment was carried out in order to study the effect of different soil modifiers on alleviating apple replant disease (ARD) in the apple orchards. Four treatments were as follows: replanted apple orchard soil (CK), replanted apple orchard soil treated with quicklime 1.0 g·kg-1 (T1), replanted apple orchard soil treated with 1.0 g·kg-1 quicklime and 1.0 g·kg-1 superphosphate (T2), and replanted apple orchard soil treated with 1.0 g·kg-1 plant ash (T3). Soil pH, plant biomass, soil bacteria, soil fungi, Fusarium oxysporum, soil enzymes, plant chlorophyll, and photosynthetic parameters were measured to detect the improvement effects of different soil amendments on acidified soil and to alleviate the ARD. The three treatments stably raised the pH of acidified soil and improved the conditions of the plant rhizosphere environment. Compared with the control, T1, T2, and T3 treatments significantly increased growth and plant biomass indexes, such as plant height and ground diameter, as well as photosynthetic parameters. Among the three treatments, T2 had the strongest effects. In July 2018 and July 2019, the number of bacteria was 151.3 and 190.5% higher in T2-treated soil than in control soil, and the number of soil fungi was 53.6 and 53.3% lower. In 2018 and 2019, the copy number of Fusarium solani was 63.6 and 58.6% lower and that of F. oxysporum was 51.8 and 55.7% lower. The T1, T2, and T3 treatments significantly increased soil enzyme activity and leaf chlorophyll content, and their effects were generally ranked T2 > T1 > T3. In conclusion, a combination of 1.0 g·kg-1 quicklime and 1.0 g·kg-1 superphosphate added to acidified replant soil increased the soil pH, improved the soil environment, increased the number of bacteria, reduced the number of fungi, increased soil enzyme activity, and improved plant photosynthetic capacity, thereby promoting the growth of replanted seedlings and effectively reducing ARD.

17.
Plant Physiol Biochem ; 179: 144-157, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35344759

RESUMO

Apple replant disease (ARD) is a complex syndrome caused by various biotic and abiotic stresses contained in replanted soil, leading to reduced plant growth and fruit yields and causing serious economic loss. Breeding disease-resistant varieties is an effective and practical method to control ARD. Effective plant defense depends in part on the plant immune responses induced by the recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). BAK1 participates in the regulation of plant immunity as an important PRR-binding protein. In this study, MdBAK1 overexpression activated indeterminate immune responses in tissue-cultured apple plants. MdBAK1-overexpressing rooted apple plants exhibited enhanced resistance to ARD, as the inhibition of plant growth was significantly alleviated during the replanted soil treatment. In addition, MdBAK1-overexpressing apple plants showed abolished growth inhibition, wilting and root rot induced by Fusarium oxysporum, which is the main pathogen that causes ARD in China. MdBAK1 overexpression changed the microbial community structure in the rhizosphere soil, as reflected by the increase in bacterial content and the decrease in fungal content, and the root exudates of MdBAK1-overexpressing plants inhibited F. oxysporum spore germination compared with that of wild-type plants. Furthermore, the constitutive immunity and cell necrosis induced by the upregulation of MdBAK1 expression were involved in the inhibition of colonization and expansion of F. oxysporum in host plants. In short, MdBAK1 plays an important role in the regulation of apple resistance to ARD, suggesting that MdBAK1 may be a valuable gene for molecular breeding of ARD resistance.


Assuntos
Fusarium , Malus , Fusarium/fisiologia , Malus/metabolismo , Melhoramento Vegetal , Rizosfera
18.
J Fungi (Basel) ; 8(1)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35050003

RESUMO

Trichoderma asperellum strain 6S-2 with biocontrol effects and potential growth-promoting properties was made into a fungal fertilizer for the prevention of apple replant disease (ARD). 6S-2 fertilizer not only promoted the growth of Malus hupehensis Rehd seedlings in greenhouse and pot experiments, but also increased the branch elongation growth of young apple trees. The soil microbial community structure changed significantly after the application of 6S-2 fertilizer: the relative abundance of Trichoderma increased significantly, the relative abundance of Fusarium (especially the gene copy numbers of four Fusarium species) and Cryptococcus decreased, and the relative abundance of Bacillus and Streptomyces increased. The bacteria/fungi and soil enzyme activities increased significantly after the application of 6S-2 fertilizer. The relative contents of alkenes, ethyl ethers, and citrullines increased in root exudates of M. hupehensis Rehd treated with 6S-2 fertilizer and were positively correlated with the abundance of Trichoderma. The relative contents of aldehydes, nitriles, and naphthalenes decreased, and they were positively correlated with the relative abundance of Fusarium. In addition, levels of ammonium nitrogen (NH4-N), nitrate nitrogen (NO3-N), available phosphorus (AP), available potassium (AK), organic matter (SOM), and pH in rhizosphere soil were also significantly related to changes in the microbial community structure. In summary, the application of 6S-2 fertilizer was effective in alleviating some aspects of ARD by promoting plant growth and optimizing the soil microbial community structure.

19.
Environ Sci Pollut Res Int ; 29(2): 3022-3036, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34382174

RESUMO

Methyl bromide has been banned worldwide because it causes damage to the ozone layer and the environment. To find a substitute for methyl bromide, the relationships among fumigation, plant growth, and the microbial community in replant soil require further study. We performed pot and field experiments to investigate the effects of dazomet fumigation on soil properties and plant performance. Changes in soil microbial community structure and diversity were assessed using high-throughput sequencing, and plant physiological performance and soil physicochemical properties were also measured. Dazomet fumigation enhanced photosynthesis and promoted plant growth in replant soil; it altered soil physical and chemical properties and reduced soil enzyme activities, although these parameters gradually recovered over time. After dazomet fumigation, the dominant soil phyla changed, microbial diversity decreased significantly, the relative abundance of biocontrol bacteria such as Mortierella increased, and the relative abundance of pathogenic bacteria such as Fusarium decreased. Over the course of the experiment, the soil microbial flora changed dynamically, and soil enzyme activities and other physical and chemical properties also recovered to a certain extent. This result suggested that the effect of dazomet on soil microorganisms was temporary. However, fumigation also led to an increase in some resistant pathogens, such as Trichosporon, that affect soil function and health. Therefore, it is necessary to consider potential negative impacts of dazomet on the soil environment and to perform active environmental risk management in China.


Assuntos
Solo , Tiadiazinas , Fumigação , Microbiologia do Solo
20.
J Fungi (Basel) ; 7(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34947033

RESUMO

A study was conducted for endophytic antagonistic fungi obtained from the roots of healthy apple trees growing in nine replanted orchards in Shandong Province, China. The fungi were assessed for their ability to inhibit Fusarium proliferatum f. sp. malus domestica MR5, a fungal strain associated with apple replant disease (ARD). An effective endophyte, designated as strain 6S-2, was isolated and identified as Trichoderma asperellum. Strain 6S-2 demonstrated protease, amylase, cellulase, and laccase activities, which are important for the parasitic and antagonistic functions of pathogenic fungi. The inhibition rate of 6S-2 against Fusarium proliferatum f. sp. malus domestica MR5 was 52.41%. Strain 6S-2 also secreted iron carriers, auxin, ammonia and was able to solubilize phosphorus. Its fermentation extract and volatile substances inhibited the growth of MR5, causing its hyphae to twist, shrink, swell, and rupture. The antifungal activity of the 6S-2 fermentation extract increased with increasing concentrations. It promoted the production and elongation of Arabidopsis thaliana lateral roots, and the strongest effects were seen at a concentration of 50 mg/mL. A GC-MS analysis of the 6S-2 fermentation extract and volatile substances showed that they comprised mainly alkanes, alcohols, and furanones, as well as the specific volatile substance 6-PP. The application of 6S-2 spore suspension to replanted apple orchard soils reduced plant oxidative damage and promoted plant growth in a pot experiment. Therefore, the endophytic strain T. asperellum 6S-2 has the potential to serve as an effective biocontrol fungus for the prevention of ARD in China, and appears to promote plant growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA