RESUMO
Castration-resistant prostate cancer (CRPC) is an advanced form of prostate cancer associated with poor survival rates. The high proliferation and metastasis rates have made CRPC one of the most challenging types of cancer for medical practitioners and researchers. In this study, the anti-cancer properties and inhibition of CRPC progression by S. neglecta extract and its active constituents were determined using two CRPC cell lines, DU145 and PC3. The ethyl acetate fraction of S. neglecta (SnEA) was obtained using a solvent-partitioned extraction technique. The active constituents of SnEA were then determined using the HPLC technique, which showed that SnEA mainly contained syringic acid, pyrogallol, and p-coumaric acid phenolic compounds. After the determination of cytotoxic properties using the SRB assay, it was found that pyrogallol, but not the other two major compounds of SnEA, displayed promising anti-cancer properties in both CRPC cell lines. SnEA and pyrogallol were then further investigated for their anti-proliferation and apoptotic induction properties using propidium iodide and Annexin V staining. The results showed that SnEA and pyrogallol inhibited both DU145 and PC3 cell proliferation by inducing cell cycle arrest in the G0/G1 phase and significantly decreased the expression of cell cycle regulator proteins (cyclin D1, cyclin E1, CDK-2, and CDK-4, p < 0.001). SnEA and pyrogallol treatments also promoted apoptosis in both types of CRPC cells through significantly downregulating anti-apoptotic proteins (survivin, Bcl-2, and Bcl-xl, p < 0.001) and upregulating apoptotic proteins (cleaved-caspase-9, cleaved-caspase-3 and cleaved-PARP-1, p < 0.001). Mechanistic study demonstrated that SnEA and pyrogallol inactivated the Akt signaling pathway leading to enhancement of the active form of GSK-3ß in CRPC cell lines. Therefore, the phosphorylation of ß-catenin was increased, which caused degradation of the protein, resulting in a downregulation of ß-catenin (unphosphorylated form) transcriptional factor activity. The current results reflect the potential impact of S. neglecta extract and pyrogallol on the management of castration-resistant prostate cancer.
Assuntos
Neoplasias de Próstata Resistentes à Castração , Spirogyra , Masculino , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Pirogalol/farmacologia , Spirogyra/metabolismo , Neglecta , beta Catenina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transdução de Sinais , ApoptoseRESUMO
Black rice has numerous health benefits and one of the well-known functional foods throughout the world. To encourage the increasing trend of the consumer interest in health-promoting functional foods, special varieties of rice have been developed offering greater nutrient values and exhibiting biological activities that are beneficial to the consumer. In this study, we aimed to evaluate the associations of the phytochemical contents, antioxidants, and anti-inflammatory properties among eight selected black rice germ and bran extracts (BR extracts) from 4 non-glutinous and 4 glutinous rice varieties. Accordingly, glutinous BR extracts possessed higher degree of Cyanidin-3-O-glucoside (C3G), Peonidin-3-O-glucoside (P3G) contents, antioxidant and anti-inflammatory properties than the non-glutinous BR extracts. Pearson's correlation indicated that the amount of C3G in the BR extracts had a strong positive association with the antioxidant properties (DPPH; r = 0.846, ABTS; r = 0.923, and FRAP; r = 0.958, p < 0.01). While P3G exhibited a strong positive association with the anti-inflammatory properties (r value = 0.717 and 0.797 for IL-6 and TNF-α inhibition, respectively, p < 0.05). Lastly, the principal component analysis (PCA) categorized the black rice varieties into three groups: Group A with high C3G content and superior antioxidant properties, Groups B with a high amount of P3G and potent anti-inflammatory properties, and Group C with a lower amount of phytochemical contents and less potent bioactivities. Overall, the outcomes of this study could provide vital information to food industries in selecting the variety of black rice for the functional food based on the anthocyanin contents that could benefit to consumers for new normal healthy lifestyle.
RESUMO
Inhibition of inflammatory responses from the spike glycoprotein of SARS-CoV-2 (Spike) by targeting NLRP3 inflammasome has recently been developed as an alternative form of supportive therapy besides the traditional anti-viral approaches. Clerodendrum petasites S. Moore (C. petasites) is a Thai traditional medicinal plant possessing antipyretic and anti-inflammatory activities. In this study, C. petasites ethanolic root extract (CpEE) underwent solvent-partitioned extraction to obtain the ethyl acetate fraction of C. petasites (CpEA). Subsequently, C. petasites extracts were determined for the flavonoid contents and anti-inflammatory properties against spike induction in the A549 lung cells. According to the HPLC results, CpEA significantly contained higher amounts of hesperidin and hesperetin flavonoids than CpEE (p < 0.05). A549 cells were then pre-treated with either C. petasites extracts or its active flavonoids and were primed with 100 ng/mL of spike S1 subunit (Spike S1) and determined for the anti-inflammatory properties. The results indicate that CpEA (compared with CpEE) and hesperetin (compared with hesperidin) exhibited greater anti-inflammatory properties upon Spike S1 induction through a significant reduction in IL-6, IL-1ß, and IL-18 cytokine releases in A549 cells culture supernatant (p < 0.05). Additionally, CpEA and hesperetin significantly inhibited the Spike S1-induced inflammatory gene expressions (NLRP3, IL-1ß, and IL-18, p < 0.05). Mechanistically, CpEA and hesperetin attenuated inflammasome machinery protein expressions (NLRP3, ASC, and Caspase-1), as well as inactivated the Akt/MAPK/AP-1 pathway. Overall, our findings could provide scientific-based evidence to support the use of C. petasites and hesperetin in the development of supportive therapies for the prevention of COVID-19-related chronic inflammation.
Assuntos
Antipiréticos , Tratamento Farmacológico da COVID-19 , Clerodendrum , Hesperidina , Petasites , Células A549 , Anti-Inflamatórios/farmacologia , Caspase 1/metabolismo , Clerodendrum/metabolismo , Citocinas/metabolismo , Flavonoides/farmacologia , Hesperidina/farmacologia , Humanos , Inflamassomos/metabolismo , Interleucina-18 , Interleucina-6 , Pulmão/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt , SARS-CoV-2 , Solventes , Glicoproteína da Espícula de Coronavírus , Fator de Transcrição AP-1RESUMO
Black rice is a functional food that is high in anthocyanin content, primarily C3G and P3G. It possesses nutraceutical properties that exhibit a range of beneficial effects on human health. Currently, the spike glycoprotein S1 subunit of SARS-CoV-2 (SP) has been reported for its contribution to pathological inflammatory responses in targeting lung tissue and innate immune cells during COVID-19 infection and in the long-COVID phenomenon. Our objectives focused on the health benefits of the C3G and P3G-rich fraction of black rice germ and bran (BR extract) on the inhibition of inflammatory responses induced by SP, as well as the inhibition of NF-kB activation and the NLRP3 inflammasome pathway in an in vitro model. In this study, BR extract was identified for its active anthocyanins, C3G and P3G, using the HPLC technique. A549-lung cells and differentiated THP-1 macrophages were treated with BR extract, C3G, or P3G prior to exposure to 100 ng/mL of SP. Their anti-inflammatory properties were then determined. BR extract at concentrations of 12.5−100 µg/mL exhibited anti-inflammation activity for both A549 and THP-1 cells through the significant suppression of NLRP3, IL-1ß, and IL-18 inflammatory gene expressions and IL-6, IL-1ß, and IL-18 cytokine secretions in a dose-dependent manner (p < 0.05). It was determined that both cell lines, C3G and P3G (at 1.25−10 µg/mL), were compatibly responsible for the significant inhibition of SP-induced inflammatory responses for both gene and protein levels (p < 0.05). With regard to the anti-inflammation mechanism, BR extract, C3G, and P3G could attenuate SP-induced inflammation via counteraction with NF-kB activation and downregulation of the inflammasome-dependent inflammatory pathway proteins (NLRP3, ASC, and capase-1). Overall, the protective effects of anthocyanins obtained from black rice germ and bran can be employed in potentially preventive strategies that use pigmented rice against the long-term sequelae of COVID-19 infection.
Assuntos
COVID-19 , Oryza , Antocianinas/farmacologia , COVID-19/complicações , Glucosídeos/farmacologia , Humanos , Inflamassomos , Interleucina-18 , Pulmão/metabolismo , Macrófagos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Oryza/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Síndrome de COVID-19 Pós-AgudaRESUMO
Osteoporosis is the result of an imbalance in the bone-remodeling process via an increase in osteoclastic activity and a decrease in osteoblastic activity. Our previous studies have shown that Perilla frutescens seed meal has anti-osteoclastogenic activity. However, the role of perilla leaf hexane fraction (PLH) in osteoporosis has not yet been investigated and reported. In this study, we aimed to investigate the effects of PLH in osteoclast differentiation and osteogenic potential using cell-based experiments in vitro. From HPLC analysis, we found that PLH contained high luteolin and baicalein. PLH was shown to inhibit RANKL-induced ROS production and tartrate-resistant acid phosphatase (TRAP)-positive multi-nucleated osteoclasts. Moreover, PLH significantly downregulated the RANKL-induced MAPK and NF-κB signaling pathways, leading to the attenuation of NFATc1 and MMP-9 expression. In contrast, PLH enhanced osteoblast function by regulating alkaline phosphatase (ALP) and restoring TNF-α-suppressed osteoblast proliferation and osteogenic potential. Thus, luteolin and baicalein-rich PLH inhibits osteoclast differentiation but promotes the function of osteoblasts. Collectively, our data provide new evidence that suggests that PLH may be a valuable anti-osteoporosis agent.
Assuntos
Osteogênese/efeitos dos fármacos , Osteoporose/prevenção & controle , Perilla frutescens/química , Extratos Vegetais/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Células RAW 264.7RESUMO
Objective: The multi-systemic inflammation as a result of COVID-19 can persevere long after the initial symptoms of the illness have subsided. These effects are referred to as Long-COVID. Our research focused on the contribution of the Spike protein S1 subunit of SARS-CoV-2 (Spike S1) on the lung inflammation mediated by NLRP3 inflammasome machinery and the cytokine releases, interleukin 6 (IL-6), IL-1beta, and IL-18, in lung epithelial cells. This study has attempted to identify the naturally- occurring agents that act against inflammation-related long-COVID. The seed meal of Perilla frutescens (P. frutescens), which contains two major dietary polyphenols (rosmarinic acid and luteolin), has been reported to exhibit anti-inflammation activities. Therefore, we have established the ethyl acetate fraction of P. frutescens seed meal (PFEA) and determined its anti-inflammatory effects on Spike S1 exposure in A549 lung cells. Methods: PFEA was established using solvent-partitioned extraction. Rosmarinic acid (Ra) and luteolin (Lu) in PFEA were identified using the HPLC technique. The inhibitory effects of PFEA and its active compounds against Spike S1-induced inflammatory response in A549 cells were determined by RT-PCR and ELISA. The mechanistic study of anti-inflammatory properties of PFEA and Lu were determined using western blot technique. Results: PFEA was found to contain Ra (388.70 ± 11.12 mg/g extract) and Lu (248.82 ± 12.34 mg/g extract) as its major polyphenols. Accordingly, A549 lung cells were pre-treated with PFEA (12.5-100 µg/mL) and its two major compounds (2.5-20 µg/mL) prior to the Spike S1 exposure at 100 ng/mL. PFEA dose-dependently exhibited anti-inflammatory properties upon Spike S1-exposed A549 cells through IL-6, IL-1ß, IL-18, and NLRP3 gene suppressions, as well as IL-6, IL-1ß, and IL-18 cytokine releases with statistical significance (p < 0.05). Importantly, Lu possesses superior anti-inflammatory properties when compared with Ra (p < 0.01). Mechanistically, PFEA and Lu effectively attenuated a Spike S1-induced inflammatory response through downregulation of the JAK1/STAT3-inflammasome-dependent inflammatory pathway as evidenced by the downregulation of NLRP3, ASC, and cleaved-caspase-1 of the NLRP3 inflammasome components and by modulating the phosphorylation of JAK1 and STAT3 proteins (p < 0.05). Conclusion: The findings suggested that luteolin and PFEA can modulate the signaling cascades that regulate Spike S1-induced lung inflammation during the incidence of Long-COVID. Consequently, luteolin and P. frutescens may be introduced as potential candidates in the preventive therapeutic strategy for inflammation-related post-acute sequelae of COVID-19.
RESUMO
Ultraviolet-B (UVB) irradiation causes skin damage via deleterious effects including oxidative stress, inflammation, and collagen degradation. The photoprotective effects of a hyperoside-enriched fraction obtained from Houttuynia cordata Thunb. (H. cordata) on the attenuation of UVB-induced skin aging in human fibroblasts were investigated. The solvent-partition technique was used to establish the hyperoside-enriched fraction of H. cordata (HcEA). The active compounds identified in the H. cordata extracts were hyperoside, quercitrin, chlorogenic acid, and rutin. With regard to the photoprotective effects of H. cordata on UVB-irradiated dermal fibroblasts, HcEA and hyperoside inhibited intracellular ROS production and inflammatory cytokine secretions (IL-6 and IL-8), while increasing collagen type I synthesis along with downregulating MMP-1 gene and protein expressions. Mechanistically, the hyperoside-enriched fraction obtained from H. cordata inhibited UVB-irradiated skin aging through regulation of the MAPK signaling pathway by attenuating the activation of JNK/ERK/c-Jun in human dermal fibroblasts. The hyperoside-enriched fraction of H. cordata exerted potent anti-skin aging properties against UVB exposure. The findings of this study can be applied in the cosmetics industry, as H. cordata extract can potentially be used in pharmaceutical or cosmetic formulations as a photoprotective or anti-skin aging agent.
RESUMO
Recently, the global trend toward the use of natural extracts and antioxidant agents in the cosmetic cream industry to produce whitening effects has been increasing. This has also been a persistent trend in Thailand. In this study, samples of commercial cosmetic creams on the Thai market were assessed for a functional evaluation of their antioxidant activity, tyrosinase inhibitory effects, and phenolic contents. Samples were extracted using hot water and sonication extraction method to obtain the functional cream extracts. Total phenolic contents in all samples were within the range of 0.46-47.92 mg GAE/30 g cream. Antioxidant activities of the cream extracts were within the range of 3.61-43.98 mg Trolox equivalent/30 g cream, while tyrosinase inhibition activities were within the range of 2.58-97.94% of inhibition. With regard to the relationship between the total phenolic content and the antioxidant activity of the cosmetic creams, Pearson's correlation coefficient revealed a moderately positive relationship with an r value of 0.6108. Furthermore, the relationship between the antioxidant activity and the tyrosinase inhibitory activity of the cosmetic creams was highly positive with an r value of 0.7238. Overall, this study demonstrated that the total phenolic contents in the functional cosmetic creams could play a role in antioxidant activity and anti-tyrosinase activities. The findings indicate how the whitening and antioxidant effects of cosmetic creams could be maintained after the products have been formulated, as this concern can affect the consumer's decision when purchasing cosmetic products.
RESUMO
Auricularia auricula-judae, a nutrient-rich mushroom used in traditional medicine, is a macrofungi that exhibits various biological properties. In this study, we have reported on the mechanisms that promote the wound-healing effects of a water-soluble polysaccharide-rich extract obtained from A. auricula-judae (AAP). AAP contained high amounts of polysaccharides (349.83 ± 5.00 mg/g extract) with a molecular weight of 158 kDa. The main sugar composition of AAP includes mannose, galactose, and glucose. AAP displayed antioxidant activity in vitro and was able to abort UVB-induced intracellular ROS production in human fibroblasts in cellulo. AAP significantly promoted both fibroblast and keratinocyte proliferation, migration, and invasion, along with augmentation of the wound-healing process by increasing collagen synthesis and decreasing E-cadherin expression (All p < 0.05). Specifically, the AAP significantly accelerated the wound closure in a mice skin wound-healing model on day 9 (2.5%AAP, p = 0.031 vs. control) and day 12 (1% and 2.5%AAP with p = 0.009 and p < 0.001 vs. control, respectively). Overall, our results indicate that the wound-healing activities of AAP can be applied in an AAP-based product for wound management.
RESUMO
Curcumin (Cur) exhibits biological activities that support its candidacy for cancer treatment. However, there are limitations to its pharmacological effects, such as poor solubility and bioavailability. Notably, the use of Cur analogs has potential for addressing these limitations. Dehydrozingerone (DZG) is a representative of the half-chemical structure of Cur, and many reports have indicated that it is anticancer in vitro. We, therefore, have hypothesized that DZG could inhibit prostate cancer progression both in vitro and in vivo. Results revealed that DZG decreased cell proliferation of rat castration-resistant prostate cancer, PLS10 cells, via induction of the cell cycle arrest in the G1 phase in vitro. In the PLS10 xenograft model, DZG significantly decreased the growth of subcutaneous tumors when compared to the control via the inhibition of cell proliferation and angiogenesis. To prove that DZG could improve the limitations of Cur, an in vivo pharmacokinetic was determined. DZG was detected in the serum at higher concentrations and remained up to 3 h after intraperitoneal injections, which was longer than Cur. DZG also showed superior in vivo tissue distribution than Cur. The results suggest that DZG could be a candidate of the Cur analog that can potentially exert anticancer capabilities in vivo and thereby improve its bioavailability.
Assuntos
Neoplasias da Próstata/tratamento farmacológico , Estirenos/farmacologia , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Disponibilidade Biológica , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Curcumina/análogos & derivados , Curcumina/farmacologia , Portadores de Fármacos/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Tamanho da Partícula , Neoplasias da Próstata/metabolismo , Ratos , Estirenos/metabolismoRESUMO
Many prostate cancer patients develop resistance to treatment called castration-resistant prostate cancer (CRPC) which is the major cause of recurrence and death. In the present study, four cyclohexanone curcumin analogs were synthesized. Additionally, their anticancer progression activity on CRPC cell lines, PC3 and PLS10 cells, was examined. We first determined their anti-metastasis properties and found that 2,6-bis-(4-hydroxy-3-methoxy-benzylidene)-cyclohexanone (2A) and 2,6-bis-(3,4-dihydroxy-benzylidene)-cyclohexanone (2F) showed higher anti-invasion properties against CRPC cells than curcumin. Analog 2A inhibited both MMP-2 and MMP-9 secretions and activities, whereas analog 2F reduced only MMP activities. These findings suggest that the compounds may inhibit CRPC cell metastasis by decreased extracellular matrix degradation. Analog 2A, the most potent analog, was then subjected to an in vivo study. Similar to curcumin, analog 2A was detectable in the serum of mice at 30 and 60 minutes after i.p. injections. Analog 2A and curcumin (30 mg/kg bodyweight) showed a similar ability to reduce tumor area in lungs of mice that were i.v. injected with PLS10 cells. Additionally, analog 2A showed superior growth inhibitory effect on PLS10 cells than that of curcumin both in vitro and in vivo. The compound inhibited PLS10 cells growth by induction of G1 phase arrest and apoptosis in vitro. Interestingly, analog 2A significantly decreased tumor growth with downregulation of cell proliferation and angiogenesis in PLS10-bearing mice. Taken together, we could summarize that analog 2A showed promising activities in inhibiting CRPC progression both in vitro and in vivo.
Assuntos
Curcumina/farmacologia , Cicloexanonas/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/metabolismo , Células PC-3 , Neoplasias de Próstata Resistentes à Castração/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodosRESUMO
Our previous study reported that stemofoline (STF) exhibited a synergistic effect with chemotherapeutic drugs in human multidrug-resistant (MDR) leukemic cells (K526/Adr) by inhibiting the function of P-glycoprotein, which is a membrane transporter that is overexpressed in several types of MDR cancers. This study further investigated the effects of a combination treatment of STF and doxorubicin (DOX) in vitro and in vivo. The combination treatment of 50 mg/kg of STF strongly enhanced the anti-tumor activity of DOX in SCID-beige mice bearing K562/Adr xenografts without additional toxicity when compared to the single treatment groups. Additionally, an examination of the proliferation markers (Ki67) and the apoptotic marker (TUNEL) in tumor tissues in each group revealed that the combination therapy significantly reduced Ki67 positive cells and increased apoptotic cells. From the in vitro experiments we also found that this combination treatment dramatically induced G1 and G2M arrest in K562/Adr when compared to a single treatment of DOX. STF treatment alone did not show any cytotoxic effect to the cells. These results suggest that the accumulation of DOX enhanced by STF was sufficient to induce cell cycle arrest in K562/Adr. These findings support our previous in vitro data and indicate the possibility of developing STF as an adjuvant therapy in cancer treatments.
Assuntos
Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Leucemia/tratamento farmacológico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Humanos , Marcação In Situ das Extremidades Cortadas/métodos , Células K562 , Antígeno Ki-67/metabolismo , Leucemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos SCIDRESUMO
BACKGROUND: Multidrug resistance (MDR) is a major reason for the failure of chemotherapy in the treatment of cancer patients. P-gp over-expression in MDR cancer cells is a multifactorial phenomenon with biochemical resistance mechanisms. Stemofoline (STF), isolated from Stemona bukillii, has been reported to be an MDR reversing compound. PURPOSE: This study investigated whether other Stemona alkaloids that had been purified from Stemonaceae plants exerted MDR modulation activity. METHODS: MTT assay was performed to determine the MDR reversing property of the alkaloids. Modulation of P-gp function by these compounds was investigated using cell cycle analysis and P-gp fluorescent substrate accumulation assays. P-gp expression was determined by Western blot analysis. We preliminarily examined the safety of these compounds in normal human fibroblasts and human peripheral blood mononuclear cells (PBMCs) using the MTT assay, and in red blood cells (human and rat) through in vitro hemolysis assays. RESULTS: Three of the eight alkaloids tested, isostemofoline (ISTF), 11Z -didehydrostemofoline (11Z-DSTF) and 11E-didehydrostemofoline (11E-DSTF), enhanced the chemotherapeutic sensitivity of MDR leukemic K562/Adr cells, which overexpressed P-gp. The P-gp functional studies showed that these three alkaloids increased the accumulation of P-gp substrates, calcein-AM (C-AM) and rhodamine123 (Rho 123) in K562/Adr cells, while this effect was not seen in drug sensitive parental K562 cells. Whereas, the alkaloids did not alter P-gp expression as was determined by Western blotting analysis. CONCLUSION: The alkaloids reversed MDR via the inhibition of P-gp function. For pharmaceutical safety testing, the alkaloids were found to be not toxic to normal human fibroblasts and PBMCs. Moreover, the effective compounds did not induce hemolysis in either human or rat erythrocytes. These compounds may be introduced as potential candidate molecules for treating cancers exhibiting P-gp-mediated MDR.
Assuntos
Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Stemonaceae/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Alcaloides/farmacologia , Animais , Células Cultivadas , Doxorrubicina/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Células K562 , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , RatosRESUMO
We previously reported the multidrug resistance-reversing ability of kuguacin J (KJ) in cervical cancer cells via the inhibition of P-glycoprotein (P-gp) function. This study investigated whether KJ could promote cisplatin- and paclitaxel (PTX)-induced cancer cell death in drug-resistance human ovarian cancer cells (SKOV3). Cytotoxicity testing showed that SKOV3 was more resistant to cisplatin and PTX compared to drug-sensitive human ovarian cancer cells (A2780). The cytotoxicity of PTX was significantly increased in SKOV3 cells when co-treated with KJ. We found that enhancement of PTX toxicity in the cells was not related to P-gp inhibition. To elucidate the mechanism by which KJ increases PTX sensitivity, the expression of cell death involving proteins was analyzed by Western blot analysis. The results showed that PTX treatment increased the level of an anti-apoptotic protein, survivin, which may be involved in drug resistance in SKOV3. The co-treatment with PTX and KJ dramatically decreased the level of survivin and markedly induced cleavage of PARP and caspase-3, which are apoptotic-induced molecules. These findings may support the use of KJ as an effective chemosensitizer in combination with conventional chemotherapy to promote PTX sensitization in ovarian cancer patients.
Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Momordica charantia/química , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/uso terapêutico , Folhas de Planta/química , Triterpenos/química , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Apoptose , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Paclitaxel/administração & dosagem , Paclitaxel/farmacologiaRESUMO
Curcumin analogs were synthesized and their multi-drug resistance (MDR) reversing properties were determined in human MDR leukemic (K562/Adr) cells. Four analogs, 1,7-bis-(3,4-dimethoxy-phenyl)-hepta-1,6-diene-3,5-dione (1J), 2,6-bis-(4-hydroxy-3-methoxy-benzylidene)-cyclohexanone (2A), 2,6-bis-(3,4-dihydroxy-benzylidene)-cyclohexanone (2F) and 2,6-bis-(3,4-dimethoxy-benzylidene)-cyclohexanone (2J) markedly increased the sensitivity of K562/Adr cells to paclitaxel (PTX) for 8-, 2-, 8- and 16- folds, respectively and vinblastine (Vin) for 5-, 3-, 12- and 30- folds, respectively. The accumulation of P-gp substrates, Calcein-AM, Rhodamine 123 and Doxorubicin, was significantly increased by 1J (up to 6-, 11- and 22- folds, respectively) and 2J (up to 7-, 12- and 17- folds, respectively). Besides 2A, 2F and 2J dramatically decreased P-gp expression in K562/Adr cells. These results could be summarized in the following way. Analog 1J inhibited only P-gp function, while 2A and 2F inhibited only P-gp expression. Interestingly, 2J exerts inhibition of both P-gp function and expression. The combination index (CI) of combination between 2J and PTX (0.09) or Vin (0.06) in K562/Adr cells indicated strong synergistic effects, which likely due to its MDR reversing activity. Moreover, these analogs showed less cytotoxicity to peripheral mononuclear cells (human) and red blood cells (human and rat) suggesting the safety of analogs for further animal and clinical studies.