Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
2.
Int J Mol Sci ; 24(16)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37628917

RESUMO

CD8+ T cells and Natural Killer (NK) cells are cytotoxic lymphocytes important in the response to intracellular pathogens and cancer. Their activity depends on the integration of a large set of intracellular and environmental cues, including antigenic signals, cytokine stimulation and nutrient availability. This integration is achieved by signaling hubs, such as the mechanistic target of rapamycin (mTOR). mTOR is a conserved protein kinase that controls cellular growth and metabolism in eukaryotic cells and, therefore, is essential for lymphocyte development and maturation. However, our current understanding of mTOR signaling comes mostly from studies performed in transformed cell lines, which constitute a poor model for comprehending metabolic pathway regulation. Therefore, it is only quite recently that the regulation of mTOR in primary cells has been assessed. Here, we review the signaling pathways leading to mTOR activation in CD8+ T and NK cells, focusing on activation by cytokines. We also discuss how this knowledge can contribute to immunotherapy development, particularly for cancer treatment.


Assuntos
Transdução de Sinais , Serina-Treonina Quinases TOR , Células Matadoras Naturais , Linfócitos T CD8-Positivos , Ciclo Celular , Citocinas
3.
J Immunol ; 210(9): 1209-1221, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36961448

RESUMO

Autosomal recessive PRKCD deficiency has previously been associated with the development of systemic lupus erythematosus in human patients, but the mechanisms underlying autoimmunity remain poorly understood. We introduced the Prkcd G510S mutation that we previously associated to a Mendelian cause of systemic lupus erythematosus in the mouse genome, using CRISPR-Cas9 gene editing. PrkcdG510S/G510S mice recapitulated the human phenotype and had reduced lifespan. We demonstrate that this phenotype is linked to a B cell-autonomous role of Prkcd. A detailed analysis of B cell activation in PrkcdG510S/G510S mice shows an upregulation of the PI3K/mTOR pathway after the engagement of the BCR in these cells, leading to lymphoproliferation. Treatment of mice with rapamycin, an mTORC1 inhibitor, significantly improves autoimmune symptoms, demonstrating in vivo the deleterious effect of mTOR pathway activation in PrkcdG510S/G510S mice. Additional defects in PrkcdG510S/G510S mice include a decrease in peripheral mature NK cells that might contribute to the known susceptibility to viral infections of patients with PRKCD mutations.


Assuntos
Autoimunidade , Lúpus Eritematoso Sistêmico , Humanos , Animais , Camundongos , Serina-Treonina Quinases TOR/metabolismo , Linfócitos B , Proliferação de Células
4.
J Immunol ; 208(7): 1802-1812, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35288470

RESUMO

NK cell receptors allow NK cells to recognize targets such as tumor cells. Many of them are expressed on a subset of NK cells, independently of each other, which creates a vast diversity of receptor combinations. Whether these combinations influence NK cell antitumor responses is not well understood. We addressed this question in the C57BL/6 mouse model and analyzed the individual effector response of 444 mouse NK cell subsets, defined by combinations of 12 receptors, against tumor cell lines originating from different tissues and mouse strains. We found a wide range of reactivity among NK subsets, but the same hierarchy of responses was observed for the different tumor types, showing that the repertoire of NK cell receptors does not encode for different tumor specificities but for different intrinsic reactivities. The coexpression of CD27, NKG2A, and DNAM-1 identified subsets with relative cytotoxic specialization, whereas reciprocally, CD11b and KLRG1 defined the best IFN-γ producers. The expression of educating receptors Ly49C, Ly49I, and NKG2A was also strongly correlated with IFN-γ production, but this effect was suppressed by unengaged receptors Ly49A, Ly49F, and Ly49G2. Finally, IL-15 coordinated NK cell effector functions, but education and unbound inhibitory receptors retained some influence on their response. Collectively, these data refine our understanding of the mechanisms governing NK cell reactivity, which could help design new NK cell therapy protocols.


Assuntos
Interferon gama , Células Matadoras Naturais , Animais , Linhagem Celular Tumoral , Interferon gama/metabolismo , Células Matadoras Naturais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Células Matadoras Naturais/metabolismo
5.
Nat Commun ; 12(1): 5446, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521844

RESUMO

EOMES and T-BET are related T-box transcription factors that control natural killer (NK) cell development. Here we demonstrate that EOMES and T-BET regulate largely distinct gene sets during this process. EOMES is dominantly expressed in immature NK cells and drives early lineage specification by inducing hallmark receptors and functions. By contrast, T-BET is dominant in mature NK cells, where it induces responsiveness to IL-12 and represses the cell cycle, likely through transcriptional repressors. Regardless, many genes with distinct functions are co-regulated by the two transcription factors. By generating two gene-modified mice facilitating chromatin immunoprecipitation of endogenous EOMES and T-BET, we show a strong overlap in their DNA binding targets, as well as extensive epigenetic changes during NK cell differentiation. Our data thus suggest that EOMES and T-BET may distinctly govern, via differential expression and co-factors recruitment, NK cell maturation by inserting partially overlapping epigenetic regulations.


Assuntos
Ciclo Celular/genética , Linhagem da Célula/genética , Células Matadoras Naturais/imunologia , Proteínas com Domínio T/genética , Animais , Sequência de Bases , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Antígeno CD11b/genética , Antígeno CD11b/imunologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/imunologia , Diferenciação Celular , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/imunologia , Epigênese Genética/imunologia , Interleucina-12/farmacologia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas , Ligação Proteica , Baço/citologia , Baço/imunologia , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/imunologia , Transcrição Gênica , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
6.
J Clin Invest ; 131(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34043588

RESUMO

Peripheral T cell lymphomas (PTCLs) represent a significant unmet medical need with dismal clinical outcomes. The T cell receptor (TCR) is emerging as a key driver of T lymphocyte transformation. However, the role of chronic TCR activation in lymphomagenesis and in lymphoma cell survival is still poorly understood. Using a mouse model, we report that chronic TCR stimulation drove T cell lymphomagenesis, whereas TCR signaling did not contribute to PTCL survival. The combination of kinome, transcriptome, and epigenome analyses of mouse PTCLs revealed a NK cell-like reprogramming of PTCL cells with expression of NK receptors (NKRs) and downstream signaling molecules such as Tyrobp and SYK. Activating NKRs were functional in PTCLs and dependent on SYK activity. In vivo blockade of NKR signaling prolonged mouse survival, demonstrating the addiction of PTCLs to NKRs and downstream SYK/mTOR activity for their survival. We studied a large collection of human primary samples and identified several PTCLs recapitulating the phenotype described in this model by their expression of SYK and the NKR, suggesting a similar mechanism of lymphomagenesis and establishing a rationale for clinical studies targeting such molecules.


Assuntos
Linfoma de Células T Periférico/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Células Matadoras Naturais/imunologia , Animais , Carcinogênese/genética , Carcinogênese/imunologia , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Genes p53 , Humanos , Células Matadoras Naturais/imunologia , Linfoma de Células T Periférico/genética , Linfoma de Células T Periférico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Experimentais/genética , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Células Matadoras Naturais/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Quinase Syk/metabolismo , Linfócitos T/imunologia
7.
J Immunol ; 206(10): 2265-2270, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33931486

RESUMO

NK cells are cytotoxic lymphocytes displaying strong antimetastatic activity. Mouse models and in vitro studies suggest a prominent role of the mechanistic target of rapamycin (mTOR) kinase in the control of NK cell homeostasis and antitumor functions. However, mTOR inhibitors are used as chemotherapies in several cancer settings. The impact of such treatments on patients' NK cells is unknown. We thus performed immunophenotyping of circulating NK cells from metastatic breast cancer patients treated with the mTOR inhibitor everolimus over a three-month period. Everolimus treatment resulted in inhibition of mTORC1 activity in peripheral NK cells, whereas mTORC2 activity was preserved. NK cell homeostasis was profoundly altered with a contraction of the NK cell pool and an overall decrease in their maturation. Phenotype and function of the remaining NK cell population was less affected. This is, to our knowledge, the first in vivo characterization of the role of mTOR in human NK cells.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Everolimo/administração & dosagem , Células Matadoras Naturais/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/patologia , Feminino , Seguimentos , França/epidemiologia , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Pessoa de Meia-Idade , Metástase Neoplásica , Estudos Prospectivos , Serina-Treonina Quinases TOR/metabolismo , Resultado do Tratamento
8.
Elife ; 102021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33507150

RESUMO

Antiviral effectors such as natural killer (NK) cells have impaired functions in chronic hepatitis B (CHB) patients. The molecular mechanism responsible for this dysfunction remains poorly characterised. We show that decreased cytokine production capacity of peripheral NK cells from CHB patients was associated with reduced expression of NKp30 and CD16, and defective mTOR pathway activity. Transcriptome analysis of patients NK cells revealed an enrichment for transcripts expressed in exhausted T cells suggesting that NK cell dysfunction and T cell exhaustion employ common mechanisms. In particular, the transcription factor TOX and several of its targets were over-expressed in NK cells of CHB patients. This signature was predicted to be dependent on the calcium-associated transcription factor NFAT. Stimulation of the calcium-dependent pathway recapitulated features of NK cells from CHB patients. Thus, deregulated calcium signalling could be a central event in both T cell exhaustion and NK cell dysfunction occurring during chronic infections.


Assuntos
Fatores de Restrição Antivirais/imunologia , Hepatite B Crônica/imunologia , Células Matadoras Naturais/imunologia , Infecção Persistente/imunologia , Linfócitos T/imunologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
Cell Mol Immunol ; 18(9): 2140-2152, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32398809

RESUMO

T cell development proceeds under the influence of a network of transcription factors (TFs). The precise role of Zeb1, a member of this network, remains unclear. Here, we report that Zeb1 expression is induced early during T cell development in CD4-CD8- double-negative (DN) stage 2 (DN2). Zeb1 expression was further increased in the CD4+CD8+ double-positive (DP) stage before decreasing in more mature T cell subsets. We performed an exhaustive characterization of T cells in Cellophane mice that bear Zeb1 hypomorphic mutations. The Zeb1 mutation profoundly affected all thymic subsets, especially DN2 and DP cells. Zeb1 promoted the survival and proliferation of both cell populations in a cell-intrinsic manner. In the periphery of Cellophane mice, the number of conventional T cells was near normal, but invariant NKT cells, NK1.1+ γδ T cells and Ly49+ CD8 T cells were virtually absent. This suggested that Zeb1 regulates the development of unconventional T cell types from DP progenitors. A transcriptomic analysis of WT and Cellophane DP cells revealed that Zeb1 regulated the expression of multiple genes involved in the cell cycle and TCR signaling, which possibly occurred in cooperation with Tcf1 and Heb. Indeed, Cellophane DP cells displayed stronger signaling than WT DP cells upon TCR engagement in terms of the calcium response, phosphorylation events, and expression of early genes. Thus, Zeb1 is a key regulator of the cell cycle and TCR signaling during thymic T cell development. We propose that thymocyte selection is perturbed in Zeb1-mutated mice in a way that does not allow the survival of unconventional T cell subsets.


Assuntos
Receptores de Antígenos de Linfócitos T alfa-beta , Subpopulações de Linfócitos T , Animais , Diferenciação Celular , Proliferação de Células , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Transdução de Sinais/genética , Timo
10.
Nat Commun ; 10(1): 5350, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31767837

RESUMO

Current doctrine is that microvascular inflammation (MVI) triggered by a transplant -recipient antibody response against alloantigens (antibody-mediated rejection) is the main cause of graft failure. Here, we show that histological lesions are not mediated by antibodies in approximately half the participants in a cohort of 129 renal recipients with MVI on graft biopsy. Genetic analysis of these patients shows a higher prevalence of mismatches between donor HLA I and recipient inhibitory killer cell immunoglobulin-like receptors (KIRs). Human in vitro models and transplantation of ß2-microglobulin-deficient hearts into wild-type mice demonstrates that the inability of graft endothelial cells to provide HLA I-mediated inhibitory signals to recipient circulating NK cells triggers their activation, which in turn promotes endothelial damage. Missing self-induced NK cell activation is mTORC1-dependent and the mTOR inhibitor rapamycin can prevent the development of this type of chronic vascular rejection.


Assuntos
Rejeição de Enxerto/imunologia , Transplante de Coração/métodos , Inflamação/imunologia , Células Matadoras Naturais/imunologia , Receptores KIR/imunologia , Animais , Células Cultivadas , Células Endoteliais/imunologia , Células Endoteliais/patologia , Humanos , Células K562 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/patologia , Doadores de Tecidos , Transplante Homólogo , Microglobulina beta-2/genética , Microglobulina beta-2/imunologia , Microglobulina beta-2/metabolismo
11.
Oncoimmunology ; 7(10): e1475875, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30288342

RESUMO

NKp46 (CD335) is a surface receptor shared by both human and mouse natural killer (NK) cells and innate lymphoid cells (ILCs) that transduces activating signals necessary to eliminate virus-infected cells and tumors. Here, we describe a spontaneous point mutation of cysteine to arginine (C14R) in the signal peptide of the NKp46 protein in congenic Ly5.1 mice and the newly generated NCRB6C14R strain. Ly5.1C14R NK cells expressed similar levels of Ncr1 mRNA as C57BL/6, but showed impaired surface NKp46 and reduced ability to control melanoma tumors in vivo. Expression of the mutant NKp46C14R in 293T cells showed that NKp46 protein trafficking to the cell surface was compromised. Although Ly5.1C14R mice had normal number of NK cells, they showed an increased number of early maturation stage NK cells. CD49a+ILC1s were also increased but these cells lacked the expression of TRAIL. ILC3s that expressed NKp46 were not detectable and were not apparent when examined by T-bet expression. Thus, the C14R mutation reveals that NKp46 is important for NK cell and ILC differentiation, maturation and function. Significance Innate lymphoid cells (ILCs) play important roles in immune protection. Various subsets of ILCs express the activating receptor NKp46 which is capable of recognizing pathogen derived and tumor ligands and is necessary for immune protection. Here, we describe a spontaneous point mutation in the signal peptide of the NKp46 protein in congenic Ly5.1 mice which are widely used for tracking cells in vivo. This Ncr1 C14R mutation impairs NKp46 surface expression resulting in destabilization of Ncr1 and accumulation of NKp46 in the endoplasmic reticulum. Loss of stable NKp46 expression impaired the maturation of NKp46+ ILCs and altered the expression of TRAIL and T-bet in ILC1 and ILC3, respectively.

12.
Front Immunol ; 9: 704, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29706958

RESUMO

Multiple myeloma (MM) is a proliferation of tumoral plasma B cells that is still incurable. Natural killer (NK) cells can recognize and kill MM cells in vitro and can limit MM growth in vivo. Previous reports have shown that NK cell function is impaired during MM progression and suggested that treatment with immunomodulatory drugs (IMIDs) such as lenalidomide (LEN) could enhance it. However, the effects of IMIDs on NK cells have been tested mostly in vitro or in preclinical models and supporting evidence of their effect in vivo in patients is lacking. Here, we monitored NK cell activity in blood samples from 10 MM patients starting after frontline induction chemotherapy (CTX) consisting either of association of bortezomib-lenalidomide-dexamethasone (Velcade Revlimid Dexamethasone) or autologous stem-cell transplantation (SCT). We also monitored NK cell activity longitudinally each month during 1 year, after maintenance therapy with LEN. Following frontline chemotherapy, peripheral NK cells displayed a very immature phenotype and retained poor reactivity toward target cells ex vivo. Upon maintenance treatment with LEN, we observed a progressive normalization of NK cell maturation, likely caused by discontinuation of chemotherapy. However, LEN treatment neither activated NK cells nor improved their capacity to degranulate or to secrete IFN-γ or MIP1-ß following stimulation with MHC-I-deficient or antibody-coated target cells. Upon LEN discontinuation, there was no reduction of NK cell effector function either. These results caution against the use of LEN as single therapy to improve NK cell activity in patients with cancer and call for more preclinical assessments of the potential of IMIDs in NK cell activation.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Citotoxicidade Imunológica/efeitos dos fármacos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Lenalidomida/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/imunologia , Idoso , Citotoxicidade Celular Dependente de Anticorpos , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores , Feminino , Humanos , Imunofenotipagem , Células Matadoras Naturais/metabolismo , Lenalidomida/administração & dosagem , Lenalidomida/efeitos adversos , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/metabolismo , Fenótipo , Resultado do Tratamento
14.
Eur J Immunol ; 48(5): 738-750, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29424438

RESUMO

T-bet and Eomes are T-box transcription factors that drive the differentiation and function of cytotoxic lymphocytes such as NK cells. Their DNA-binding domains are highly similar, suggesting redundant transcriptional activity. However, while these transcription factors have different patterns of expression, the phenotype of loss-of-function mouse models suggests that they play distinct roles in the development of NK cells and other innate lymphoid cells (ILCs). Recent technological advances using reporter mice and conditional knockouts were fundamental in defining the regulation and function of these factors at steady state and during pathological conditions such as various types of cancer or infection. Here, we review these recent developments, focusing on NK cells as prototypical cytotoxic lymphocytes and their development, and also discuss parallels between NK cells and T cells. We also examine the role of T-bet and Eomes in human NK cells and ILC1s. Considering divergent findings on mouse and human ILC1s, we propose that NK cells are defined by coexpression of T-bet and Eomes, while ILC1s express only one of these factors, either T-bet or Eomes, depending on the tissue or the species.


Assuntos
Células Matadoras Naturais/citologia , Subpopulações de Linfócitos/citologia , Proteínas com Domínio T/metabolismo , Animais , Diferenciação Celular , Doenças Transmissíveis/imunologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Células Matadoras Naturais/imunologia , Subpopulações de Linfócitos/imunologia , Camundongos , Neoplasias/imunologia , Proteínas com Domínio T/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo
15.
J Immunol ; 200(2): 551-557, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29237776

RESUMO

The role of sphingosine-1 phosphate (S1P) in leukocyte trafficking has been well deciphered in mice but remains largely unaddressed in humans. In this study, we assessed the ex vivo response to S1P of primary human T cell subsets. We found that tonsil but not blood leukocytes were responsive to S1P gradients, suggesting that T cell responsiveness is regulated during their recirculation in vivo. Tonsil naive T cells were readily chemoattracted by S1P in an FTY720-sensitive, S1PR1-dependent manner. Surprisingly, S1P had the opposite effect on effector memory T cells, resident memory T cells, and recently activated T cells, inhibiting their spontaneous or chemokine-induced migration. This inhibition was also more pronounced for CD4 T cells than for CD8 T cell subsets, and was dependent on S1PR2, as shown using the S1PR2 antagonist JTE-013. S1PR1 was progressively downregulated during T cell differentiation whereas S1PR2 expression remained stable. Our results suggest that the ratio between S1PR1 and S1PR2 governs the migratory behavior of T cell subsets. They also challenge previous models of the role of S1P in lymphocyte recirculation and suggest that S1P promotes retention of memory T cell subsets in secondary lymphoid organs, via S1PR2.


Assuntos
Quimiotaxia de Leucócito/imunologia , Memória Imunológica , Lisofosfolipídeos/imunologia , Esfingosina/análogos & derivados , Linfócitos T/imunologia , Quimiocinas/metabolismo , Humanos , Imunofenotipagem , Ativação Linfocitária/imunologia , Tecido Linfoide/imunologia , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Esfingosina/imunologia , Receptores de Esfingosina-1-Fosfato , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/metabolismo
17.
Cancers (Basel) ; 9(10)2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28956813

RESUMO

The control of cellular metabolism is now recognized as key to regulate functional properties of immune effectors such as T or Natural Killer (NK) cells. During persistent infections or in the tumor microenvironment, multiple metabolic changes have been highlighted in T cells that contribute to their dysfunctional state or exhaustion. NK cells may also undergo major phenotypic and functional modifications when infiltrating tumors that could be linked to metabolic alterations. The mammalian target of rapamycin (mTOR) kinase is a central regulator of cellular metabolism. mTOR integrates various extrinsic growth or immune signals and modulates metabolic pathways to fulfill cellular bioenergetics needs. mTOR also regulates transcription and translation thereby adapting cellular pathways to the growth or activation signals that are received. Here, we review the role and regulation of mTOR in NK cells, with a special focus on cytokines that target mTOR such as IL-15 and TGF-ß. We also discuss how NK cell metabolic activity could be enhanced or modulated to improve their effector anti-tumor functions in clinical settings.

18.
Elife ; 62017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28875936

RESUMO

NK cell education is the process through which chronic engagement of inhibitory NK cell receptors by self MHC-I molecules preserves cellular responsiveness. The molecular mechanisms responsible for NK cell education remain unclear. Here, we show that mouse NK cell education is associated with a higher basal activity of the mTOR/Akt pathway, commensurate to the number of educating receptors. This higher activity was dependent on the SHP-1 phosphatase and essential for the improved responsiveness of reactive NK cells. Upon stimulation, the mTOR/Akt pathway amplified signaling through activating NK cell receptors by enhancing calcium flux and LFA-1 integrin activation. Pharmacological inhibition of mTOR resulted in a proportional decrease in NK cell reactivity. Reciprocally, acute cytokine stimulation restored reactivity of hyporesponsive NK cells through mTOR activation. These results demonstrate that mTOR acts as a molecular rheostat of NK cell reactivity controlled by educating receptors and uncover how cytokine stimulation overcomes NK cell education.


Assuntos
Células Matadoras Naturais/imunologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Citocinas/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Camundongos Endogâmicos C57BL , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
19.
Clin Immunol ; 177: 12-17, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-26794911

RESUMO

Obesity is associated with increased cancer rates and higher susceptibility to infections. The adipose tissue of obese individuals is inflammatory and may negatively impact on innate and adaptive immunity in a systemic way. Here, we explored the phenotype and function of peripheral Natural Killer (NK) cells of patients in correlation with their body mass index (BMI). We found that high BMI was associated with an increased activation status of peripheral NK cells, as measured by surface levels of CD69 and levels of granzyme-B. However, these activated NK cells had an impaired capacity to degranulate or to produce cytokines/chemokines when exposed to tumor cell lines deficient in MHC-I expression or coated with antibodies. This suggests that chronic stimulation of NK cells during obesity may lead to their incapacity to respond normally and eliminate target cells, which could contribute to the greater susceptibility of obese individuals to develop cancers or infectious diseases.


Assuntos
Células Matadoras Naturais/imunologia , Obesidade/imunologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
20.
Eur J Immunol ; 46(9): 2095-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27600673

RESUMO

Recent studies of immune populations in nonlymphoid organs have highlighted the great diversity of the innate lymphoid system. It has also become apparent that mouse and human innate lymphoid cells (ILCs) have distinct phenotypes and properties. In this issue of the European Journal of Immunology, Harmon et al. [Eur. J. Immunol. 2016. 46: 2111-2120] characterized human hepatic NK-cell subsets. The authors report that hepatic CD56(bright) NK cells resemble mouse liver ILC1s in that they express CXCR6 and have an immature phenotype. However, unlike mouse ILC1s, they express high levels of Eomes and low levels of T-bet, and upon stimulation with tumor cells, secrete low amounts of cytokines. These unexpected findings further support the differences between human and mouse immune populations and prompt the study of the role of hepatic ILC subsets in immune responses.


Assuntos
Imunidade Inata/imunologia , Células Matadoras Naturais/imunologia , Animais , Citocinas , Hepatócitos , Humanos , Fígado/imunologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA