Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(50): 27295-27306, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38060544

RESUMO

A new family of molecules obtained by coupling Tröger's base unit with dicyanovinylene-terminated oligothiophenes of different lengths has been synthesized and characterized by steady-state stationary and transient time-resolved spectroscopies. Quantum chemical calculations allow us to interpret and recognize the properties of the stationary excited states as well as the time-dependent mechanisms of singlet-to-triplet coupling. The presence of the diazocine unit in Tröger's base derivatives is key to efficiently producing singlet-to-triplet intersystem crossing mediated by the role of the nitrogen atoms and of the almost orthogonal disposition of the two thiophene arms. Spin-orbit coupling-mediated interstate intersystem crossing (ISC) is activated by a symmetry-breaking process in the first singlet excited state with partial charge transfer character. This mechanism is a characteristic of these molecular triads since the independent dicyanovinylene-oligothiophene branches do not display appreciable ISC. These results show how Tröger's base coupling of organic chromophores can be used to improve the ISC efficiency and tune their photophysics.

2.
ACS Appl Mater Interfaces ; 15(35): 41624-41633, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37623297

RESUMO

Cu3BiS3 thin films are fabricated via spin coating of precursor solutions containing copper and bismuth xanthates onto planar glass substrates or mesoporous metal oxide scaffolds followed by annealing at 300 °C to convert the metal xanthates into copper bismuth sulfide. Detailed insights into the film formation are gained from time-resolved simultaneous small and wide angle X-ray scattering measurements. The Cu3BiS3 films show a high absorption coefficient and a band gap of 1.55 eV, which makes them attractive for application in photovoltaic devices. Transient absorption spectroscopic measurements reveal that charge generation yields in mesoporous TiO2/Cu3BiS3 heterojunctions can be significantly improved by the introduction of an In2S3 interlayer, and long-lived charge carriers (t50% of 10 µs) are found.

3.
Angew Chem Int Ed Engl ; 62(42): e202311387, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37650244

RESUMO

Diradicals based on the Blatter units and connected by acetylene and alkene spacers have been prepared. All the molecules show sizably large diradical character and low energy singlet-triplet gaps. Their photo-physical properties concerning their lowest energy excited state have been studied in detail by steady-state and time-resolved absorption spectroscopy. We have fully identified the main optical absorption band and full absence of emission from the lowest energy excited state. A computational study has been also carried out that has helped to identify the presence of a conical intersection between the lowest energy excited state and the ground state which produces a highly efficient light-to-heat conversion of the absorbed radiation. Furthermore, an outstanding photo-thermal conversion 77.23 % has been confirmed, close to the highest in the diradicaloid field. For the first time, stable diradicals are applied to photo-thermal therapy of tumor cells with good stability and satisfactory performance at near-infrared region.

4.
Chemistry ; 29(57): e202301337, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37419861

RESUMO

Organic solar cells have been continuously studied and developed through the last decades. A major step in their development was the introduction of fused-ring non-fullerene electron acceptors. Yet, beside their high efficiency, they suffer from complex synthesis and stability issues. Perylene-based non-fullerene acceptors, in contrast, can be prepared in only a few steps and display good photochemical and thermal stability. Herein, we introduce four monomeric perylene diimide acceptors obtained in a three-step synthesis. In these molecules, the semimetals silicon and germanium were added in the bay position, on one or both sides of the molecules, resulting in asymmetric and symmetric compounds with a red-shifted absorption compared to unsubstituted perylene diimide. Introducing two germanium atoms improved the crystallinity and charge carrier mobility in the blend with the conjugated polymer PM6. In addition, charge carrier separation is significantly influenced by the high crystallinity of this blend, as shown by transient absorption spectroscopy. As a result, the solar cells reached a power conversion efficiency of 5.38 %, which is one of the highest efficiencies of monomeric perylene diimide-based solar cells recorded to date.

5.
J Am Chem Soc ; 145(6): 3507-3514, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36735862

RESUMO

Narrow bandgap conjugated polymers are a heavily studied class of organic semiconductors, but their excited states usually have a very short lifetime, limiting their scope for applications. One approach to overcome the short lifetime is to populate long-lived triplet states for which relaxation to the ground state is forbidden. However, the triplet lifetime of narrow bandgap polymer films is typically limited to a few microseconds. Here, we investigated the effect of film morphology on triplet dynamics in red-emitting conjugated polymers based on the classic benzodithiophene monomer unit with the solubilizing alkyl side chains C16 and C2C6 and then used Pd porphyrin sensitization as a further strategy to change the triplet dynamics. Using transient absorption spectroscopy, we demonstrated a 0.45 ms triplet lifetime for the more crystalline nonsensitized polymer C2C6, 2-3 orders of magnitude longer than typically reported, while the amorphous C16 had only a 5 µs lifetime. The increase is partly due to delaying bimolecular electron-hole recombination in the more crystalline C2C6, where a higher energy barrier for charge recombination is expected. A triplet lifetime of 0.4 ms was also achieved by covalently incorporating 5% of Pd porphyrin into the C16 polymer, which introduced extra energy transfer steps between the polymer and porphyrin that delayed triplet dynamics and increased the polymer triplet yield by 7.9 times. This work demonstrates two synthetic approaches to generate the longest-lived triplet excited states in narrow bandgap conjugated polymers, which is of necessity in a wide range of fields that range from organic electronics to sensors and bioapplications.

6.
J Am Chem Soc ; 143(31): 12230-12243, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34342430

RESUMO

Understanding interfacial charge transfer processes such as trap-mediated recombination and injection into charge transport layers (CTLs) is crucial for the improvement of perovskite solar cells. Herein, we reveal that the chemical binding of charge transport layers to CH3NH3PbI3 defect sites is an integral part of the interfacial charge injection mechanism in both n-i-p and p-i-n architectures. Specifically, we use a mixture of optical and X-ray photoelectron spectroscopy to show that binding interactions occur via Lewis base interactions between electron-donating moieties on hole transport layers and the CH3NH3PbI3 surface. We then correlate the extent of binding with an improvement in the yield and longer lifetime of injected holes with transient absorption spectroscopy. Our results show that passivation-mediated charge transfer has been occurring undetected in some of the most common perovskite configurations and elucidate a key design rule for the chemical structure of next-generation CTLs.

7.
Chemistry ; 26(4): 863-872, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31660647

RESUMO

Designing chromophores for biological applications requires a fundamental understanding of how the chemical structure of a chromophore influences its photophysical properties. We here describe the synthesis of a library of BODIPY dyes, exploring diversity at various positions around the BODIPY core. The results show that the nature and position of substituents have a dramatic effect on the spectroscopic properties. Substituting in a heavy atom or adjusting the size and orientation of a conjugated system provides a means of altering the spectroscopic profiles with high precision. The insight from the structure-activity relationship was applied to devise a new BODIPY dye with rationally designed photochemical properties including absorption towards the near-infrared region. The dye also exhibited switch-on fluorescence to enable visualisation of cells with high signal-to-noise ratio without washing-out of unbound dye. The BODIPY-based probe is non-cytotoxic and compatible with staining procedures including cell fixation and immunofluorescence microscopy.


Assuntos
Compostos de Boro/química , Corantes Fluorescentes/química , Ionóforos/química , Fluorescência , Microscopia de Fluorescência , Coloração e Rotulagem
8.
J Phys Chem Lett ; 10(13): 3813-3819, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31244264

RESUMO

The active layer of organic solar cells typically possesses a complex morphology, with amorphous donor/acceptor mixed domains present in addition to purer, more crystalline domains. These crystalline domains may represent an energy sink for free charges that aids charge separation and suppresses bimolecular recombination. The first step in exploiting this behavior is the identification and characterization of charges located in these different domains. Herein, the generation and recombination of both bulk and interfacial polarons are demonstrated in the dual electron donor/acceptor polymer XIND using transient absorption spectroscopy. The absorption spectra of XIND bulk polarons, present in pristine polymer domains, are clearly distinguishable from those of polarons present at the donor/acceptor interface. Furthermore, it is shown that photogenerated polarons are transferred from the interface to the bulk. These findings support the energy sink hypothesis and offer a way to maximize morphology relationships to enhance charge generation and suppress recombination.

9.
J Am Chem Soc ; 137(15): 5087-99, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25785843

RESUMO

Methylammonium lead iodide (MAPI) cells of the design FTO/sTiO2/mpTiO2/MAPI/Spiro-OMeTAD/Au, where FTO is fluorine-doped tin oxide, sTiO2 indicates solid-TiO2, and mpTiO2 is mesoporous TiO2, are studied using transient photovoltage (TPV), differential capacitance, charge extraction, current interrupt, and chronophotoamperometry. We show that in mpTiO2/MAPI cells there are two kinds of extractable charge stored under operation: a capacitive electronic charge (∼0.2 µC/cm(2)) and another, larger charge (40 µC/cm(2)), possibly related to mobile ions. Transient photovoltage decays are strongly double exponential with two time constants that differ by a factor of ∼5, independent of bias light intensity. The fast decay (∼1 µs at 1 sun) is assigned to the predominant charge recombination pathway in the cell. We examine and reject the possibility that the fast decay is due to ferroelectric relaxation or to the bulk photovoltaic effect. Like many MAPI solar cells, the studied cells show significant J-V hysteresis. Capacitance vs open circuit voltage (V(oc)) data indicate that the hysteresis involves a change in internal potential gradients, likely a shift in band offset at the TiO2/MAPI interface. The TPV results show that the V(oc) hysteresis is not due to a change in recombination rate constant. Calculation of recombination flux at V(oc) suggests that the hysteresis is also not due to an increase in charge separation efficiency and that charge generation is not a function of applied bias. We also show that the J-V hysteresis is not a light driven effect but is caused by exposure to electrical bias, light or dark.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA