Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 242(1): 247-261, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38358035

RESUMO

Effector genes, encoding molecules involved in disease establishment, are concertedly expressed throughout the lifecycle of plant-pathogenic fungi. However, little is known about how effector gene expression is regulated. Since many effector genes are located in repeat-rich regions, the role of chromatin remodeling in their regulation was recently investigated, notably establishing that the repressive histone modification H3K9me3, deposited by KMT1, was involved in several fungal species including Leptosphaeria maculans. Nevertheless, previous data suggest that a second regulatory layer, probably involving a specific transcription factor (TF), might be required. In L. maculans, a Dothideomycete causing stem canker of oilseed rape, we identified the ortholog of Pf2, a TF belonging to the Zn2Cys6 fungal-specific family, and described as essential for pathogenicity and effector gene expression. We investigated its role together with KMT1, by inactivating and over-expressing LmPf2 in a wild-type strain and a ∆kmt1 mutant. Functional analyses of the corresponding transformants highlighted an essential role of LmPf2 in the establishment of pathogenesis and we found a major effect of LmPf2 on the induction of effector gene expression once KMT1 repression is lifted. Our results show, for the first time, a dual control of effector gene expression.


Assuntos
Ascomicetos , Brassica napus , Leptosphaeria , Ascomicetos/fisiologia , Brassica napus/genética , Virulência/genética , Expressão Gênica , Doenças das Plantas/microbiologia
2.
New Phytol ; 223(1): 397-411, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30802965

RESUMO

Interactions between Leptosphaeria maculans, causal agent of stem canker of oilseed rape, and its Brassica hosts are models of choice to explore the multiplicity of 'gene-for-gene' complementarities and how they diversified to increased complexity in the course of plant-pathogen co-evolution. Here, we support this postulate by investigating the AvrLm10 avirulence that induces a resistance response when recognized by the Brassica nigra resistance gene Rlm10. Using genome-assisted map-based cloning, we identified and cloned two AvrLm10 candidates as two genes in opposite transcriptional orientation located in a subtelomeric repeat-rich region of the genome. The AvrLm10 genes encode small secreted proteins and show expression profiles in planta similar to those of all L. maculans avirulence genes identified so far. Complementation and silencing assays indicated that both genes are necessary to trigger Rlm10 resistance. Three assays for protein-protein interactions showed that the two AvrLm10 proteins interact physically in vitro and in planta. Some avirulence genes are recognized by two distinct resistance genes and some avirulence genes hide the recognition specificities of another. Our L. maculans model illustrates an additional case where two genes located in opposite transcriptional orientation are necessary to induce resistance. Interestingly, orthologues exist for both L. maculans genes in other phytopathogenic species, with a similar genome organization, which may point to an important conserved effector function linked to heterodimerization of the two proteins.


Assuntos
Ascomicetos/genética , Brassica napus/genética , Brassica napus/microbiologia , Epistasia Genética , Ascomicetos/patogenicidade , Sequência Conservada/genética , DNA Intergênico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Loci Gênicos , Genoma Fúngico , Fenótipo , Mapeamento Físico do Cromossomo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Ligação Proteica , Sinais Direcionadores de Proteínas , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA