Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biology (Basel) ; 11(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36290403

RESUMO

The seaweed Desmarestia aculeata (Phaeophyceae) is distributed in the temperate zone of the North Atlantic up to the Arctic, where it is exposed to a high Arctic light regime and fluctuating salinity conditions resulting from glacial and terrestrial run-off. Information on how this species is able to thrive under current and future Arctic conditions is scarce. During the Arctic summer of 2019, D. aculeata was collected in Kongsfjorden, Svalbard (78.9° N, 11.9° E) to investigate its physiological and biochemical responses to variations in salinity (salinities: 34, 28 and 18) and daily cycles of irradiance (50-500 µmol photons m-2s-1) at 0 °C over 21 days. The species revealed effective short-term acclimation to both abiotic drivers. Maximal quantum yield of PSII (Fv/Fm) fluctuated with the light cycle at a salinity of 34, while the maximum relative electron transport rate (rETRmax) significantly differed between salinities of 28 and 18. Chlorophyll a and ß-Carotene remained at high concentrations in all treatments showing pronounced acclimation during the experiment. High mannitol concentrations were measured throughout the experiment, while phlorotannins were high at low salinity. Hyposalinity and light are interacting drivers of the physiological and biochemical acclimation process for D. aculeata. Our experiment highlights the high ecophysiological plasticity of D. aculeata, suggesting that the species will likely be capable of withstanding future habitat changes in the Arctic.

2.
PeerJ ; 7: e7610, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31579579

RESUMO

The Katalalixar National Reserve (KNR) lies in an isolated marine protected area of Magellan Sub-Antarctic channels, which represent an important area for marine biodiversity and macroalgal conservation. The present study is the first report of the species Lessonia spicata, "huiro negro", in the Magellan Sub-Antarctic channels. This finding has implications for macroalgal biogeography and conservation concerns in the Chilean coast. In the ecological assessments of the KNR in 2018 we found populations of L. spicata, specifically on rocky shores of Torpedo Island and Castillo Channel. The morphological identification and molecular phylogeny based on nuclear (ITS1) sequences revealed that these populations of Lessonia are within the lineage of L. spicata of central Chile. This report increases the species richness of kelps for the Magellan Sub-Antarctic Channels from two to three confirmed species (L. flavicans, L. searlesiana and L. spicata), and it also extends the southern distribution range of L. spicata. This species has high harvest demand and is moving towards southern Chile; thus, these populations should be considered as essential for macroalgal conservation in high latitudes of South America.

3.
Zookeys ; (738): 1-25, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29670417

RESUMO

Interactions between algae and herbivores can be affected by various factors, such as seasonality and habitat structure. Among herbivores inhabiting marine systems, species of the order Patellogastropoda are considered key organisms in many rocky coasts of the world. Nacella species are one of the most dominant macro-herbivores on the rocky shores of the sub-Antarctic ecoregion of Magellan. However, the importance of its key role must be associated with its trophic ecology. The objective of this work was to evaluate spatial and temporal variabilities in the dietary composition of two intertidal Nacella species, considering grazing on macro- (macroalgae) and microscopic (periphyton) food. The composition of periphyton and the availability of macroalgae in the winter and summer seasons were examined at two localities of the Magellanic province, alongside the gut contents of N. magellanica and N. deaurata. The dietary composition differed between the two Nacella species, as well as between seasons and locations. The differences observed in the diet of the two species of Nacella may be mainly due to their respective distributions in the intertidal zone. Both species presented a generalist strategy of grazing, which is relationed to the seasonality of micro- and macroalgae availability and to the variability of the assemblages between the localities. This research was the first to perform a detailed study of the diet of intertidal Nacella species.

4.
Zookeys ; (519): 49-100, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26448707

RESUMO

Knowledge about the marine malacofauna in the Magellan Region has been gained from many scientific expeditions that were carried out during the 19th century. However, despite the information that exists about molluscs in the Magellan Region, there is a lack of studies about assemblages of molluscs co-occurring with macroalgae, especially commercially exploitable algae such as Gigartina skottsbergii, a species that currently represents the largest portion of carrageenans within the Chilean industry. The objective of this study is to inform about the richness, systematics, and distribution of the species of molluscs associated with natural beds in the Strait of Magellan. A total of 120 samples from quadrates of 0.25 m(2) were obtained by SCUBA diving at two sites within the Strait of Magellan. Sampling occurred seasonally between autumn 2010 and summer 2011: 15 quadrates were collected at each site and season. A total of 852 individuals, corresponding to 42 species of molluscs belonging to Polyplacophora (9 species), Gastropoda (24), and Bivalvia (9), were identified. The species richness recorded represents a value above the average richness of those reported in studies carried out in the last 40 years in sublittoral bottoms of the Strait of Magellan. The biogeographic affinity indicates that the majority of those species (38%) present an endemic Magellanic distribution, while the rest have a wide distribution in the Magellanic-Pacific, Magellanic-Atlantic, and Magellanic-Southern Ocean. The molluscs from the Magellan Region serve as study models for biogeographic relationships that can explain long-reaching patterns and are meaningful in evaluating possible ecosystemic changes generated by natural causes or related to human activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA