Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 119: 1-11, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28433878

RESUMO

In this study, the aging of culturable FIB and DNA representing genetic markers for Enterococcus spp. (ENT1A), general Bacteroides (GB3), and human-associated Bacteroides (HF183) in freshwater sediments was evaluated. Freshwater sediment was collected from four different sites within the upper and lower reach of the Topanga Creek Watershed and two additional comparator sites within the Santa Monica Bay, for a total of six sites. Untreated (ambient) and oven-dried (reduced microbiota) sediment was inoculated with 5% sewage and artificial freshwater. Microcosms were held for a 21-day period and sampled on day 0, 1, 3, 5, 7, 12, and 21. There were substantial differences in decay among the sediments tested, and decay rates were related to sediment characteristics. In the ambient sediments, smaller particle size and higher levels of organic matter and nutrients (nitrogen and phosphorus) were associated with increased persistence of the GB3 marker and culturable Escherichia coli (cEC) and enterococci (cENT). The HF183 marker exhibited decay rates of -0.50 to -0.96 day-1, which was 2-5 times faster in certain ambient sediments than decay of culturable FIB and the ENT1A and GB3 markers. The ENT1A and GB3 markers decayed at rates of between -0.07 and -0.28 and -0.10 to -0.44 day-1, and cEC and cENT decayed at rates of between -0.22 and -0.81 and -0.03 and -0.40 day-1, respectively. In the oven-dried sediments, increased persistence of all indicators and potential for limited growth of culturable FIB and the GB3 and ENT1A markers was observed. A simplified two-box model using the HF183 marker and cENT decay rates generated from the microcosm experiments was applied to two reaches within the Topanga Canyon watershed in order to provide context for the variability in decay rates observed. The model predicted lower ambient concentrations of enterococci in sediment in the upper (90 MPN g-1) versus lower Topanga watershed (530 MPN g-1) and low ambient levels of the HF183 marker (below the LLOQ) in sediments in both lower and upper watersheds. It is important to consider the variability in the persistence of genetic markers and FIB when evaluating indicators of fecal contamination in sediments, even within one watershed.


Assuntos
Bactérias/genética , Fezes , Marcadores Genéticos , Sedimentos Geológicos , California , Água Doce , Humanos
2.
Macromol Rapid Commun ; 35(17): 1528-33, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25042670

RESUMO

We present a method to produce anti-fouling reverse osmosis (RO) membranes that maintains the process and scalability of current RO membrane manufacturing. Utilizing perfluorophenyl azide (PFPA) photochemistry, commercial reverse osmosis membranes were dipped into an aqueous solution containing PFPA-terminated poly(ethyleneglycol) species and then exposed to ultraviolet light under ambient conditions, a process that can easily be adapted to a roll-to-roll process. Successful covalent modification of commercial reverse osmosis membranes was confirmed with attenuated total reflectance infrared spectroscopy and contact angle measurements. By employing X-ray photoelectron spectroscopy, it was determined that PFPAs undergo UV-generated nitrene addition and bind to the membrane through an aziridine linkage. After modification with the PFPA-PEG derivatives, the reverse osmosis membranes exhibit high fouling-resistance.


Assuntos
Azidas/química , Hidrocarbonetos Fluorados/química , Membranas Artificiais , Purificação da Água , Aziridinas/química , Incrustação Biológica , Iminas/química , Espectroscopia Fotoeletrônica , Espectrofotometria Infravermelho , Raios Ultravioleta
3.
Environ Sci Technol ; 45(20): 8989-95, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21866941

RESUMO

High-throughput screening was employed to evaluate bactericidal activities of hybrid Ag-TiO2 nanoparticles comprising variations in TiO2 crystalline phase, Ag content, and synthesis method. Hybrid Ag-TiO2 nanoparticles were prepared by either wet-impregnation or UV photo deposition onto both Degussa P25 and DuPont R902 TiO2 nanoparticles. The presence of Ag was confirmed by ICP, TEM, and XRD analysis. The size of Ag nanoparticles formed on anatase/rutile P25 TiO2 nanoparticles was smaller than those formed on pure rutile R902. When activated by UV light, all hybrid Ag-TiO2 nanoparticles exhibited stronger bactericidal activity than UV alone, Ag/UV, or UV/TiO2. For experiments conducted in the dark, bactericidal activity of Ag-TiO2 nanoparticles was greater than either bare TiO2 (inert) or pure Ag nanoparticles, suggesting that the hybrid materials produced a synergistic antibacterial effect unrelated to photoactivity. Moreover, less Ag(+) dissolved from Ag-TiO2 nanoparticles than from Ag nanoparticles, indicating the antibacterial activities of Ag-TiO2 was not only caused by releasing of toxic metal ions. It is clear that nanotechnology can produce more effective bactericides; however, the challenge remains to identify practical ways to take advantage of these exciting new material properties.


Assuntos
Luz , Prata/química , Titânio/química , Escuridão , Nanopartículas/química
4.
Environ Sci Technol ; 44(19): 7321-8, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20873875

RESUMO

Although silver nanoparticles are being exploited widely in antimicrobial applications, the mechanisms underlying silver nanoparticle antimicrobial properties in environmentally relevant media are not fully understood. The latter point is critical for understanding potential environmental impacts of silver nanoparticles. The aim of this study was to elucidate the influence of inorganic aquatic chemistry on silver nanoparticle stability (aggregation, dissolution, reprecipitation) and bacterial viability. A synthetic "fresh water" matrix was prepared comprising various combinations of cations and anions while maintaining a fixed ionic strength. Aggregation and dissolution of silver nanoparticles was influenced by electrolyte composition; experimentally determined ionic silver concentrations were about half that predicted from a thermodynamic model and about 1000 times lower than the maximum dispersed silver nanoparticle concentration. Antibacterial activity of silver nanoparticles was much lower than Ag(+) ions when compared on the basis of total mass added; however, the actual concentrations of dissolved silver were the same regardless of how silver was introduced. Bacterial inactivation also depended on bacteria cell type (Gram-positive/negative) as well as the hardness and alkalinity of the suspending media. These simple, but systematic studies--enabled by high-throughput screening--reveal the inherent complexity associated with understanding silver nanoparticle antibacterial efficacy as well as potential environmental impacts of silver nanoparticles.


Assuntos
Bactérias/efeitos dos fármacos , Nanopartículas Metálicas , Prata/química , Antibacterianos/farmacologia , Concentração Inibidora 50 , Concentração Osmolar , Solubilidade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA