Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Cell Death Discov ; 10(1): 351, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107280

RESUMO

Radiotherapy (RT) plays a critical role in the management of rhabdomyosarcoma (RMS), the prevalent soft tissue sarcoma in childhood. The high risk PAX3-FOXO1 fusion-positive subtype (FP-RMS) is often resistant to RT. We have recently demonstrated that inhibition of class-I histone deacetylases (HDACs) radiosensitizes FP-RMS both in vitro and in vivo. However, HDAC inhibitors exhibited limited success on solid tumors in human clinical trials, at least in part due to the presence of off-target effects. Hence, identifying specific HDAC isoforms that can be targeted to radiosensitize FP-RMS is imperative. We, here, found that only HDAC3 silencing, among all class-I HDACs screened by siRNA, radiosensitizes FP-RMS cells by inhibiting colony formation. Thus, we dissected the effects of HDAC3 depletion using CRISPR/Cas9-dependent HDAC3 knock-out (KO) in FP-RMS cells, which resulted in Endoplasmatic Reticulum Stress activation, ERK inactivation, PARP1- and caspase-dependent apoptosis and reduced stemness when combined with irradiation compared to single treatments. HDAC3 loss-of-function increased DNA damage in irradiated cells augmenting H2AX phosphorylation and DNA double-strand breaks (DSBs) and counteracting irradiation-dependent activation of ATM and DNA-Pkcs as well as Rad51 protein induction. Moreover, HDAC3 depletion hampers FP-RMS tumor growth in vivo and maximally inhibits the growth of irradiated tumors compared to single approaches. We, then, developed a new HDAC3 inhibitor, MC4448, which showed specific cell anti-tumor effects and mirrors the radiosensitizing effects of HDAC3 depletion in vitro synergizing with ERKs inhibition. Overall, our findings dissect the pro-survival role of HDAC3 in FP-RMS and suggest HDAC3 genetic or pharmacologic inhibition as a new promising strategy to overcome radioresistance in this tumor.

2.
BMC Cancer ; 24(1): 814, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977944

RESUMO

BACKGROUND: Despite a multimodal approach including surgery, chemo- and radiotherapy, the 5-year event-free survival rate for rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in childhood, remains very poor for metastatic patients, mainly due to the selection and proliferation of tumour cells driving resistance mechanisms. Personalised medicine-based protocols using new drugs or targeted therapies in combination with conventional treatments have the potential to enhance the therapeutic effects, while minimizing damage to healthy tissues in a wide range of human malignancies, with several clinical trials being started. In this study, we analysed, for the first time, the antitumour activity of SFX-01, a complex of synthetic d, l-sulforaphane stabilised in alpha-cyclodextrin (Evgen Pharma plc, UK), used as single agent and in combination with irradiation, in four preclinical models of alveolar and embryonal RMS. Indeed, SFX-01 has shown promise in preclinical studies for its ability to modulate cellular pathways involved in inflammation and oxidative stress that are essential to be controlled in cancer treatment. METHODS: RH30, RH4 (alveolar RMS), RD and JR1 (embryonal RMS) cell lines as well as mouse xenograft models of RMS were used to evaluate the biological and molecular effects induced by SFX-01 treatment. Flow cytometry and the modulation of key markers analysed by q-PCR and Western blot were used to assess cell proliferation, apoptosis, autophagy and production of intracellular reactive oxygen species (ROS) in RMS cells exposed to SFX-01. The ability to migrate and invade was also investigated with specific assays. The possible synergistic effects between SFX-01 and ionising radiation (IR) was studied in both the in vitro and in vivo studies. Student's t-test or two-way ANOVA were used to test the statistical significance of two or more comparisons, respectively. RESULTS: SFX-01 treatment exhibited cytostatic and cytotoxic effects, mediated by G2 cell cycle arrest, apoptosis induction and suppression of autophagy. Moreover, SFX-01 was able to inhibit the formation and the proliferation of 3D tumorspheres as monotherapy and in combination with IR. Finally, SFX-01, when orally administered as single agent, displayed a pattern of efficacy at reducing the growth of tumour masses in RMS xenograft mouse models; when combined with a radiotherapy regime, it was observed to act synergistically, resulting in a more positive outcome than would be expected by adding each exposure alone. CONCLUSIONS: In summary, our results provide evidence for the antitumour properties of SFX-01 in preclinical models of RMS tumours, both as a standalone treatment and in combination with irradiation. These forthcoming findings are crucial for deeper investigations of SFX-01 molecular mechanisms against RMS and for setting up clinical trials in RMS patients in order to use the SFX-01/IR co-treatment as a promising therapeutic approach, particularly in the clinical management of aggressive RMS disease.


Assuntos
Apoptose , Proliferação de Células , Rabdomiossarcoma , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Rabdomiossarcoma/radioterapia , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/patologia , Radiação Ionizante , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Terapia Combinada
3.
Artigo em Inglês | MEDLINE | ID: mdl-38959941

RESUMO

BACKGROUND: Rapid spread of the SARS-CoV-2 pandemic in 2020 led to an indirect effect on non-COVID patients. Since neuro-oncology cases are unique and brain tumors need a specific therapeutic protocol at proper doses and at the right times, the effects of the pandemic on health care services for patients with glioblastomas (GBs) and their impact on overall survival (OS) and quality of life are not yet known. METHODS: We conducted a retrospective study of 142 GB patients who underwent surgery, radiation, and chemotherapy before and after the lockdown period, aiming to determine the differences in access to care, treatment modality, and adjuvant therapies, and how the lockdown changed the prognosis. RESULTS: The number of procedures performed for GB during the pandemic was comparable to that of the prepandemic period, and patients received standard care. There was a significant difference in the volume of lesions measured at diagnosis with a decreased number of "accidental" diagnoses and expression of a reduced use by the patient for a checkup or follow-up examinations. Patients expressed a significantly lower performance index in the lockdown period with longer progression-free survival (PFS) in the face of a comparable mean time to OS. CONCLUSION: Patients treated surgically for GB during the pandemic period had a more pronounced and earlier reduction in performance status than patients treated during the same period the year before. This appears to be primarily due to lower levels of care in the rehabilitation centers and more frequent discontinuation of adjuvant care.

5.
PLoS Biol ; 22(4): e3002582, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683874

RESUMO

Muscarinic acetylcholine receptors are prototypical G protein-coupled receptors (GPCRs), members of a large family of 7 transmembrane receptors mediating a wide variety of extracellular signals. We show here, in cultured cells and in a murine model, that the carboxyl terminal fragment of the muscarinic M2 receptor, comprising the transmembrane regions 6 and 7 (M2tail), is expressed by virtue of an internal ribosome entry site localized in the third intracellular loop. Single-cell imaging and import in isolated yeast mitochondria reveals that M2tail, whose expression is up-regulated in cells undergoing integrated stress response, does not follow the normal route to the plasma membrane, but is almost exclusively sorted to the mitochondria inner membrane: here, it controls oxygen consumption, cell proliferation, and the formation of reactive oxygen species (ROS) by reducing oxidative phosphorylation. Crispr/Cas9 editing of the key methionine where cap-independent translation begins in human-induced pluripotent stem cells (hiPSCs), reveals the physiological role of this process in influencing cell proliferation and oxygen consumption at the endogenous level. The expression of the C-terminal domain of a GPCR, capable of regulating mitochondrial function, constitutes a hitherto unknown mechanism notably unrelated to its canonical signaling function as a GPCR at the plasma membrane. This work thus highlights a potential novel mechanism that cells may use for controlling their metabolism under variable environmental conditions, notably as a negative regulator of cell respiration.


Assuntos
Respiração Celular , Mitocôndrias , Receptor Muscarínico M2 , Animais , Humanos , Camundongos , Proliferação de Células , Células HEK293 , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M2/genética , Estresse Fisiológico
6.
Cancers (Basel) ; 16(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473215

RESUMO

Identifying the molecular mechanisms underlying radioresistance is a priority for the treatment of RMS, a myogenic tumor accounting for approximately 50% of all pediatric soft tissue sarcomas. We found that irradiation (IR) transiently increased phosphorylation of Akt1, Src, and Cav1 in human RD and RH30 lines. Synthetic inhibition of Akt1 and Src phosphorylation increased ROS levels in all RMS lines, promoting cellular radiosensitization. Accordingly, the elevated activation of the Akt1/Src/Cav1 pathway, as detected in two RD lines characterized by overexpression of a myristoylated Akt1 form (myrAkt1) or Cav1 (RDCav1), was correlated with reduced levels of ROS, higher expression of catalase, and increased radioresistance. We found that treatment with cholesterol-lowering drugs such as lovastatin and simvastatin promoted cell apoptosis in all RMS lines by reducing Akt1 and Cav1 levels and increasing intracellular ROS levels. Combining statins with IR significantly increased DNA damage and cell apoptosis as assessed by γ histone 2AX (γH2AX) staining and FACS analysis. Furthermore, in combination with the chemotherapeutic agent actinomycin D, statins were effective in reducing cell survival through increased apoptosis. Taken together, our findings suggest that the molecularly linked signature formed by Akt1, Src, Cav1, and catalase may represent a prognostic determinant for identifying subgroups of RMS patients with higher probability of recurrence after radiotherapy. Furthermore, statin-induced oxidative stress could represent a treatment option to improve the success of radiotherapy.

7.
Int J Radiat Biol ; 100(1): 18-27, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37561127

RESUMO

PURPOSE: Technetium-99m (99mTc)-diphosphonates represent the most common radiopharmaceutical used for bone scintigraphy. Even if the uptake in bone tissue has been widely explored, atypical uptake could be seen in soft tissue malignancies during bone scintigraphy. Increased vascularization and endothelium permeability represent front-row players in the biodistribution of the tracer, albeit other causes have been identified such as trauma, necrosis, the presence of calcification in metastasis, the pH of the tissue and consequently the type of ion concentration. CONCLUSION: The aim of this paper is to summarize the state of art of atypical soft tissue uptake seen in cancer tissues. The research was conducted on PubMed. The analysis of the literature suggests that calcium metabolism and ionic saturation have a pivotal role in the biodistribution of bone tracers. This phenomenon ranks in a complex scenario that includes carcinogenesis and cancer environment aspects. We also report two cases in our Institution in which atypical uptake in cancer tissues was observed.


Assuntos
Difosfonatos , Neoplasias , Humanos , Cintilografia , Distribuição Tecidual , Osso e Ossos , Neoplasias/metabolismo , Compostos Radiofarmacêuticos , Medronato de Tecnécio Tc 99m/metabolismo
9.
Cell Oncol (Dordr) ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095764

RESUMO

BACKGROUND: Radiation therapy (RT) is a key anti-cancer treatment that involves using ionizing radiation to kill tumor cells. However, this therapy can lead to short- and long-term adverse effects due to radiation exposure of surrounding normal tissue. The type of DNA damage inflicted by radiation therapy determines its effectiveness. High levels of genotoxic damage can lead to cell cycle arrest, senescence, and cell death, but many tumors can cope with this damage by activating protective mechanisms. Intrinsic and acquired radioresistance are major causes of tumor recurrence, and understanding these mechanisms is crucial for cancer therapy. The mechanisms behind radioresistance involve processes like hypoxia response, cell proliferation, DNA repair, apoptosis inhibition, and autophagy. CONCLUSION: Here we briefly review the role of genetic and epigenetic factors involved in the modulation of DNA repair and DNA damage response that promote radioresistance. In addition, leveraging our recent results on the effects of low dose rate (LDR) of ionizing radiation on Drosophila melanogaster we discuss how this model organism can be instrumental in the identification of conserved factors involved in the tumor resistance to RT.

10.
Nat Commun ; 14(1): 8373, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102140

RESUMO

Rhabdomyosarcomas (RMS) are pediatric mesenchymal-derived malignancies encompassing PAX3/7-FOXO1 Fusion Positive (FP)-RMS, and Fusion Negative (FN)-RMS with frequent RAS pathway mutations. RMS express the master myogenic transcription factor MYOD that, whilst essential for survival, cannot support differentiation. Here we discover SKP2, an oncogenic E3-ubiquitin ligase, as a critical pro-tumorigenic driver in FN-RMS. We show that SKP2 is overexpressed in RMS through the binding of MYOD to an intronic enhancer. SKP2 in FN-RMS promotes cell cycle progression and prevents differentiation by directly targeting p27Kip1 and p57Kip2, respectively. SKP2 depletion unlocks a partly MYOD-dependent myogenic transcriptional program and strongly affects stemness and tumorigenic features and prevents in vivo tumor growth. These effects are mirrored by the investigational NEDDylation inhibitor MLN4924. Results demonstrate a crucial crosstalk between transcriptional and post-translational mechanisms through the MYOD-SKP2 axis that contributes to tumorigenesis in FN-RMS. Finally, NEDDylation inhibition is identified as a potential therapeutic vulnerability in FN-RMS.


Assuntos
Rabdomiossarcoma , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Fatores de Transcrição , Transformação Celular Neoplásica , Diferenciação Celular
11.
BJR Case Rep ; 9(4): 20200142, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576003

RESUMO

Skin metastases from prostate cancer (PCa) are rare, cause considerable discomfort, and usually indicate advanced disease and a poor prognosis. To date, literature accounts for no more than 88 cases of skin metastasis from PCa, and radiation therapy (RT) is not considered a standard treatment option. Here, we have described a rare case of skin localization of castration-resistant metastatic PCa, which occurred in a 75-year-old male previously treated with RT for PCa, 11 years earlier. The skin lesions, which progressively appeared in different areas of the chest wall, were successfully treated with electron beam RT (900 cGy, for 3 consecutive days). Five months after irradiating skin metastases, the patient showed general fair conditions and no longer developed other skin lesions in the areas already treated or elsewhere. This report describes a scarce case of cutaneous metastases from PCa, underlying the crucial role of RT as a definitive palliative treatment that should be used to limit systemic chemotherapy-related toxicity.

12.
Diagnostics (Basel) ; 13(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37627887

RESUMO

BACKGROUND: Radio-guided surgery is a reliable approach used for localizing ground-glass opacities, lung nodules, and metastatic lymph nodes. Lung nodules, lymph node metastatic involvement, and ground-glass opacities often represent a challenge for surgical management and clinical work-up. METHODS: PubMed research was conducted from January 1997 to June 2023 using the keywords "radioguided surgery and lung cancer". RESULTS: Different studies were conducted with different tracers: technetium-99m-albumin macroaggregates, cyanoacrylate combined to technetium-99m-sulfur colloid, indium-111-pentetreotide, and fluorine-18-deoxyglucose. A study proposed naphthalocyanine radio-labeled with copper-64. Radio-guided surgery has been demonstrated to be a reliable approach in localizing a lesion, and has a low radiological burden for personnel exposure and low morbidity. The lack of necessity to conduct radio-guided surgery under fluoroscopy or echography makes this radio-guided surgery an easy way of performing precise surgical procedures. CONCLUSIONS: Radio-guided surgery is a feasible approach useful for the intraoperative localization of ground-glass opacities, lung nodules, and metastatic lymph nodes. It is a valid alternative to the existing approaches due to its low cost, associated low morbidity, the possibility to perform the procedure after several hours, the low radiation dose applied, and the small amount of time that is required to perform it.

13.
J Neurooncol ; 164(2): 271-286, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37624529

RESUMO

Despite aggressive management consisting of surgery, radiation therapy (RT), and systemic therapy given alone or in combination, a significant proportion of patients with brain tumors will experience tumor recurrence. For these patients, no standard of care exists and management of either primary or metastatic recurrent tumors remains challenging.Advances in imaging and RT technology have enabled more precise tumor localization and dose delivery, leading to a reduction in the volume of health brain tissue exposed to high radiation doses. Radiation techniques have evolved from three-dimensional (3-D) conformal RT to the development of sophisticated techniques, including intensity modulated radiation therapy (IMRT), volumetric arc therapy (VMAT), and stereotactic techniques, either stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT). Several studies have suggested that a second course of RT is a feasible treatment option in patients with a recurrent tumor; however, survival benefit and treatment related toxicity of reirradiation, given alone or in combination with other focal or systemic therapies, remain a controversial issue.We provide a critical overview of the current clinical status and technical challenges of reirradiation in patients with both recurrent primary brain tumors, such as gliomas, ependymomas, medulloblastomas, and meningiomas, and brain metastases. Relevant clinical questions such as the appropriate radiation technique and patient selection, the optimal radiation dose and fractionation, tolerance of the brain to a second course of RT, and the risk of adverse radiation effects have been critically discussed.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Radiocirurgia , Radioterapia Conformacional , Reirradiação , Humanos , Reirradiação/métodos , Recidiva Local de Neoplasia/radioterapia , Recidiva Local de Neoplasia/cirurgia , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Radioterapia Conformacional/métodos , Neoplasias Cerebelares/cirurgia
14.
Head Neck ; 45(9): 2363-2368, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37439379

RESUMO

BACKGROUND: To evaluate the role of definitive weekly hypofractionated radiotherapy (RT) for the treatment of surgery-ineligible elderly patients with cutaneous squamous cell carcinoma of the head and neck region (cHNSCC). METHODS: Eligible elderly patients (aged ≥75 years) with cHNSCC were included. Patients received definitive weekly hypofractionated RT, using megavoltage electrons, to a total dose of 56-64 Gy (8 Gy per fraction). Primary endpoint was objective response rate (ORR), defined as the percentage of patients with a complete (CR) or partial response (PR). Secondary endpoints included duration of response (DOR), progression-free survival (PFS), overall survival (OS), pain response, tolerability, and safety. RESULTS: A total of 19 patients with 27 lesions were included and treated with definitive weekly hypofractionated RT. All patients received the prescribed total dose. ORR was 92.6%, including 70.4% of lesions with a CR and 22.2% with a PR. Median DOR was 12 months. No severe toxicity occurred. CONCLUSIONS: Our study confirmed the satisfying efficacy and acceptable toxicity of definitive weekly hypofractionated RT for cHNSCC in elderly patients. Our results establish weekly hypofractionated scheduleas a promising treatment option for elderly patients with cHNSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Cutâneas , Idoso , Humanos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Resultado do Tratamento , Neoplasias Cutâneas/radioterapia , Neoplasias de Cabeça e Pescoço/radioterapia
15.
Biomedicines ; 11(4)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37189775

RESUMO

BACKGROUND: Abscopal effect (AE) describes the ability of radiotherapy (RT) to induce immune-mediated responses in nonirradiated distant metastasis. Bone represents the third most frequent site of metastasis and an immunologically favorable environment for the proliferation of cancer cells. We revised the literature, searching documented cases of AE involving bone metastases (BMs) and evaluated the incidence of AE involving BMs in patients requiring palliative RT on BMs or non-BMs treated at our department. METHODS: Articles published in the PubMed/MEDLINE database were selected using the following search criteria: ((abscopal effect)) AND ((metastases)). Patients with BMs, who underwent performed bone scintigraphy before and at least 2-3 months after RT, were selected and screened between January 2015 and July 2022. AE was defined as an objective response according to the scan bone index for at least one nonirradiated metastasis at a distance > 10 cm from the irradiated lesion. The primary endpoint was the rate of AE on BMs. RESULTS: Ten cases experiencing AE of BMs were identified from the literature and eight among our patients. CONCLUSIONS: The analysis performed here suggests the use of hypofractionated radiotherapy as the only triggering factor for AE of BMs through the activation of the immune response.

16.
J Neurooncol ; 163(2): 339-344, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37227648

RESUMO

PURPOSE: The Ki-67/MIB-1 labeling index (LI) is clinically used to differentiate between high and low-grade gliomas, while its prognostic value remains questionable. Glioblastoma (GBM) expressing wild-type isocitrate dehydrogenase IDHwt, a relatively common malignant brain tumor in adults, is characterized by a dismal prognosis. Herein, we have retrospectively investigated the prognostic role of Ki-67/MIB-1-LI in a large group of IDHwt GBM. METHODS: One hundred nineteen IDHwt GBM patients treated with surgery followed by Stupp's protocol in our Institution between January 2016 and December 2021 were selected. A cut-off value for Ki-67/MIB-1-LI was used with minimal p-value based approach. RESULTS: A multivariate analysis showed that Ki-67/MIB-1-LI expression < 15% significantly correlated with a longer overall survival (OS), independently from the age of the patients, Karnofsky performance status scale, extent of surgery and O6-methylguanine (O6-MeG)-DNA methyltransferase promoter methylation status. CONCLUSIONS: Among other studies focused on Ki-67/MIB-1-LI, this is the first observational study showing a positive correlation between OS of IDHwt GBM patients and Ki-67/MIB-1-LI that we propose as a new predictive marker in this subtype of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Adulto , Humanos , Antígeno Ki-67/metabolismo , Estudos Retrospectivos , Metilação , Glioma/patologia , Prognóstico , Neoplasias Encefálicas/patologia , O(6)-Metilguanina-DNA Metiltransferase/genética , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Metilação de DNA , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
17.
Radiat Oncol ; 18(1): 62, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016421

RESUMO

BACKGROUND: The management of brain metastases (BM), the major cause of cancer morbidity and mortality, is becoming an emerging area of interest. Surgery, whole brain radiation therapy (WBRT), or stereotactic radiosurgery (SRS), have historically been the main focal treatments for BM. However, the introduction of innovative targeted- and immune-based therapies is progressively changing the paradigm of BM treatment, resulting in an increase in clinical trials investigating new therapeutic strategies. METHODS: Using ClinicalTrials.gov, the largest clinical trial registry with over 400,000 registered trials, we performed an analysis of phase II and phase III ongoing trials evaluating different systemic therapies, radiotherapy (RT), and surgery given alone or in combination in patients with BM. RESULTS: One hundred sixty-eight trials, 133 phase II and 35 phase III; the largest part having primarily the curative treatment of patients with BM from lung cancer, breast cancer and melanoma, were selected. One hundred sixty-three trials used systemic therapies. One hundred thirteen used tyrosine kinase inhibitors, more frequently Osimertinib, Icotinib and Pyrotinib, 50 used monoclonal antibodies, more frequently Trastuzumab, Pembrolizumab, Nivolumab, 20 used conventional chemotherapies whilst no oncological active drugs were used in 6 trials. Ninety-six trials include RT; 54 as exclusive treatment and 42 in combination with systemic therapies. CONCLUSION: Systemic targeted- and/or immune-based therapies, combined or not with RT, are increasingly used in the routine of BM treatment. SRS is progressively replacing WBRT. All these trials intend to address multiple questions on the management of patients with BMs, including the recommended upfront treatment for different cancer histologies and the optimal timing between systemic therapies and radiation regarding brain control and neurocognitive outcome and quality of life.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Neoplasias Pulmonares , Radiocirurgia , Feminino , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Irradiação Craniana/métodos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Qualidade de Vida , Radiocirurgia/métodos , Ensaios Clínicos como Assunto , Melanoma/tratamento farmacológico , Melanoma/patologia
18.
World Neurosurg ; 175: e1117-e1123, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37088414

RESUMO

BACKGROUND: Maximal surgical resection remains the treatment of choice for grade II meningiomas, and for some authors it is sufficient to guarantee a long indolent course even without postsurgical radiotherapy (RT), but there is no consensus on the use of RT in this patient population. METHODS: We retrospectively compared clinical and radiologic outcomes between World Health Organization grade I (group A) and grade II (group B) surgically treated meningiomas, focusing on the role of adjuvant RT. We registered clinical, surgical, and radiologic data to detect differences in survival and functional outcome between the 2 groups. RESULTS: The final cohort consisted of 284 patients for group A and 94 patients for group B. Group B showed a higher risk of developing recurrence independently of the extent of resection (7.75% for Group A vs. 27.7% for Group B, P = 0.01). Patients who did not undergo adjuvant RT documented recurrence in 50% of cases, compared with 19% of patients who underwent RT (P = 0.024). There is a weak difference in the risk of developing postoperative seizures in the group submitted to radiotherapy (P = 0.08). Performance status remained stable for both groups, but for Group B it tended to decrease significantly after 1 year with regard to extent of resection and RT. CONCLUSIONS: Recurrence is more frequent for grade II meningiomas, even though there are no significant differences in terms of complications and functional outcome. Radiotherapy in grade II meningiomas does indeed lead to better control of recurrence but leads to an increased risk of seizures and reduced performance status.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/radioterapia , Meningioma/cirurgia , Radioterapia Adjuvante , Neoplasias Meníngeas/radioterapia , Neoplasias Meníngeas/cirurgia , Estudos Retrospectivos , Resultado do Tratamento , Organização Mundial da Saúde , Convulsões , Recidiva Local de Neoplasia
19.
Front Cell Dev Biol ; 11: 1061570, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755974

RESUMO

Rhabdomyosarcoma (RMS) is a pediatric myogenic soft tissue sarcoma that includes fusion-positive (FP) and fusion-negative (FN) molecular subtypes. FP-RMS expresses PAX3-FOXO1 fusion protein and often shows dismal prognosis. FN-RMS shows cytogenetic abnormalities and frequently harbors RAS pathway mutations. Despite the multimodal heavy chemo and radiation therapeutic regimens, high risk metastatic/recurrent FN-RMS shows a 5-year survival less than 30% due to poor sensitivity to chemo-radiotherapy. Therefore, the identification of novel targets is needed. Polyamines (PAs) such as putrescine (PUT), spermidine (SPD) and spermine (SPM) are low-molecular-mass highly charged molecules whose intracellular levels are strictly modulated by specific enzymes. Among the latter, spermine oxidase (SMOX) regulates polyamine catabolism oxidizing SPM to SPD, which impacts cellular processes such as apoptosis and DNA damage response. Here we report that low SMOX levels are associated with a worse outcome in FN-RMS, but not in FP-RMS, patients. Consistently, SMOX expression is downregulated in FN-RMS cell lines as compared to normal myoblasts. Moreover, SMOX transcript levels are reduced FN-RMS cells differentiation, being indirectly downregulated by the muscle transcription factor MYOD. Noteworthy, forced expression of SMOX in two cell lines derived from high-risk FN-RMS: 1) reduces SPM and upregulates SPD levels; 2) induces G0/G1 cell cycle arrest followed by apoptosis; 3) impairs anchorage-independent and tumor spheroids growth; 4) inhibits cell migration; 5) increases γH2AX levels and foci formation indicative of DNA damage. In addition, forced expression of SMOX and irradiation synergize at activating ATM and DNA-PKCs, and at inducing γH2AX expression and foci formation, which suggests an enhancement in DNA damage response. Irradiated SMOX-overexpressing FN-RMS cells also show significant decrease in both colony formation capacity and spheroids growth with respect to single approaches. Thus, our results unveil a role for SMOX as inhibitor of tumorigenicity of FN-RMS cells in vitro. In conclusion, our in vitro results suggest that SMOX induction could be a potential combinatorial approach to sensitize FN-RMS to ionizing radiation and deserve further in-depth studies.

20.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36768994

RESUMO

Oral squamous cell carcinoma (OSCC) is a rapidly progressive cancer that often develops resistance against DNA damage inducers, such as radiotherapy and chemotherapy, which are still the standard of care regimens for this tumor. Thus, the identification of biomarkers capable of monitoring the clinical progression of OSCC and its responsiveness to therapy is strongly required. To meet this need, here we have employed Whole Genome Sequencing and RNA-seq data from a cohort of 316 patients retrieved from the TCGA Pan-Cancer Atlas to analyze the genomic and transcriptomic status of the DNA damage response (DDR) genes in OSCC. Then, we correlated the transcriptomic data with the clinical parameters of each patient. Finally, we relied on transcriptomic and drug sensitivity data from the CTRP v2 portal, performing Pearson's correlation analysis to identify putative vulnerabilities of OSCC cell lines correlated with DDR gene expression. Our results indicate that several DDR genes show a high frequency of genomic and transcriptomic alterations and that the expression of some of them correlates with OSCC grading and infection by the human papilloma virus. In addition, we have identified a signature of eight DDR genes (namely CCNB1, CCNB2, CDK2, CDK4, CHECK1, E2F1, FANCD2, and PRKDC) that could be predictive for OSCC response to the novel antitumor compounds sorafenib and tipifarnib-P1. Altogether, our data demonstrate that alterations in DDR genes could have an impact on the biology of OSCC. Moreover, here we propose a DDR gene signature whose expression could be predictive of OSCC responsiveness to therapy.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Dano ao DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA