Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mem Inst Oswaldo Cruz ; 117: e210403, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320824

RESUMO

Despite the increasing number of manuscripts describing potential alternative antileishmanial compounds, little is advancing on translating these knowledges to new products to treat leishmaniasis. This is in part due to the lack of standardisations during pre-clinical drug discovery stage and also depends on the alignment of goals among universities/research centers, government and pharmaceutical industry. Inspired or not by drug repurposing, metal-based antileishmanial drugs represent a class that deserves more attention on its use for leishmaniasis chemotherapy. Together with new chemical entities, progresses have been made on the knowledge of parasite-specific drug targets specially after using CRISPR/Cas system for functional studies. In this regard, Leishmania parasites undergoe post-translational modification as key regulators in several cellular processes, which represents an entire new field for drug target elucidation, once this is poorly explored. This perspective review describes the advances on antileishmanial metallodrugs and the elucidation of drug targets based on post-translational modifications, highlighting the limitations on the drug discovery/development process and suggesting standardisations focused on products addressed to who need it most.


Assuntos
Antiprotozoários , Leishmania , Leishmaniose , Antiprotozoários/química , Descoberta de Drogas , Humanos , Leishmaniose/tratamento farmacológico , Processamento de Proteína Pós-Traducional
2.
Mem. Inst. Oswaldo Cruz ; 117: e210403, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1365155

RESUMO

Despite the increasing number of manuscripts describing potential alternative antileishmanial compounds, little is advancing on translating these knowledges to new products to treat leishmaniasis. This is in part due to the lack of standardisations during pre-clinical drug discovery stage and also depends on the alignment of goals among universities/research centers, government and pharmaceutical industry. Inspired or not by drug repurposing, metal-based antileishmanial drugs represent a class that deserves more attention on its use for leishmaniasis chemotherapy. Together with new chemical entities, progresses have been made on the knowledge of parasite-specific drug targets specially after using CRISPR/Cas system for functional studies. In this regard, Leishmania parasites undergoe post-translational modification as key regulators in several cellular processes, which represents an entire new field for drug target elucidation, once this is poorly explored. This perspective review describes the advances on antileishmanial metallodrugs and the elucidation of drug targets based on post-translational modifications, highlighting the limitations on the drug discovery/development process and suggesting standardisations focused on products addressed to who need it most.

3.
Trends Parasitol ; 37(9): 815-830, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33994102

RESUMO

Protein lysine acetylation has emerged as a major regulatory post-translational modification in different organisms, present not only on histone proteins affecting chromatin structure and gene expression but also on nonhistone proteins involved in several cellular processes. The same scenario was observed in protozoan parasites after the description of their acetylomes, indicating that acetylation might regulate crucial biological processes in these parasites. The demonstration that glycolytic enzymes are regulated by acetylation in protozoans shows that this modification might regulate several other processes implicated in parasite survival and adaptation during the life cycle, opening the chance to explore the regulatory acetylation machinery of these parasites as drug targets for new treatment development.


Assuntos
Eucariotos , Proteínas de Protozoários , Acetilação , Eucariotos/enzimologia , Eucariotos/genética , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/metabolismo
4.
Mol Microbiol ; 115(5): 942-958, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33513291

RESUMO

Trypanosoma and Leishmania parasites cause devastating tropical diseases resulting in serious global health consequences. These organisms have complex life cycles with mammalian hosts and insect vectors. The parasites must, therefore, survive in different environments, demanding rapid physiological and metabolic changes. These responses depend upon regulation of gene expression, which primarily occurs posttranscriptionally. Altering the composition or conformation of RNA through nucleotide modifications is one posttranscriptional mechanism of regulating RNA fate and function, and modifications including N6-methyladenosine (m6A), N1-methyladenosine (m1A), N5-methylcytidine (m5C), N4-acetylcytidine (ac4C), and pseudouridine (Ψ), dynamically regulate RNA stability and translation in diverse organisms. Little is known about RNA modifications and their machinery in Trypanosomatids, but we hypothesize that they regulate parasite gene expression and are vital for survival. Here, we identified Trypanosomatid homologs for writers of m1A, m5C, ac4C, and Ψ and analyze their evolutionary relationships. We systematically review the evidence for their functions and assess their potential use as therapeutic targets. This work provides new insights into the roles of these proteins in Trypanosomatid parasite biology and treatment of the diseases they cause and illustrates that Trypanosomatids provide an excellent model system to study RNA modifications, their molecular, cellular, and biological consequences, and their regulation and interplay.


Assuntos
Transcriptoma , Trypanosoma/genética , Tripanossomíase/parasitologia , Animais , Epigenômica , Humanos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Trypanosoma/enzimologia , Trypanosoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA