RESUMO
Assessment of natural background levels (NBLs) of compositional groundwater parameters helps to identify the potential threats to groundwater resources. This study is the first attempt to apply the pre-selection-based BRIDGE (Background cRiteria for the IDentification of Groundwater thrEshold) methodology to calculate the NBLs and threshold values (TVs) of major groundwater constituents in the southwest Bengal Basin, Bangladesh. A database consisting of 78 groundwater samples was used to assess the NBLs and associated TVs of the major groundwater parameters (EC, Ca2+, Mg2+, Na+, K+, Cl-, NO3-, SO42-, PO43-, Mn2+, and Fe2+). NBLs were derived based on 90th and 97.7th percentiles. The status of regional groundwater resources was assessed by applying 90th percentile NBL on a regional dataset (n = 196). Results revealed the "poor" chemical status of shallow aquifers denoting heavy deterioration of the groundwater quality due to anthropogenic interventions. Nitrate contamination and salinization were identified as the major threats to the deep groundwater of the southwest Bengal Basin. Finally, to verify the chemical status of groundwater in a heavily urbanized area, derived TVs were applied throughout the experimental site Khulna. Twenty-five deep groundwater samples were collected for this purpose. Though most of the parameters exhibited "good" chemical status, nitrate demonstrated anthropogenic groundwater contamination in Khulna City. Thus, the developed TVs would provide an early warning system of pollution. On a national scale, it is expected to facilitate the sustainable groundwater management of the country and contribute to achieving the Sustainable Development Goals (SDG) of the United Nations (UN) in Bangladesh.
Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Nitratos , Bangladesh , Poluentes Químicos da Água/análiseRESUMO
Increasing water salinity in coastal areas is a concern for the coastal environment. Increased salinity is affecting water quality, freshwater availability, and water-related ecosystems in the southwest coastal region of the Bengal Delta. The study used a synergies and robust approach to assess the possible factors for increasing water salinity in an embanked coastal island in the southwest Bengal Delta. The hydrochemical analysis revealed that surface and groundwater are enriching with Na+ and Cl- concentration, also controlling by seawater through the ion exchange mechanism (Ca2+ and Mg2+ replacing by Na+, and Cl-), mixing stage of water solution (freshwater-saltwater), and anthropogenic salt contamination by human activities (e.g., saltwater shrimp cultivation and excessive irrigation). Piper diagram showed that river water is occupying at the mixing stage of solution, where pond and groundwater are occupying at seawater (saline) zone. The water quality index showed that surface water is not fresh anymore and unsuitable for drinking purposes. The isotope analyses exposed the presence of strong precipitation variance in the study area. Cluster observation analysis showed a strong correlation between Na+, Cl-, and TDS (similarity is 97% to 99%). The remote sensing application illustrated that high salinity zones are in the northern part, and groundwater salinity is higher (7.5 to 8 ppt) in the northern part of polder 32. The salinity of both groundwater and surface water showed a positive correlation with land surface temperature and potential evapotranspiration. The study exposed four responding factors for increasing groundwater salinity in this region, which are - regional surface geological settings, hydrological settings, hydraulic head gradient, and human activities. A conceptual model illustrated the presence of lateral recharge of saltwater from the surrounding tidal rivers to the groundwater.
RESUMO
The Hazaribagh industrial area in Dhaka city, the capital of Bangladesh, is considered one of the hotspots of chromium (Cr) pollution, due to excessive discharge of Cr contaminated waste over decades by approximately 150 tanneries. In 2000, elevated Cr concentrations were observed in the underlying Dupi Tila Aquifer (DTA), which is heavily deployed for drinking water supply of Dhaka city's population. In the following years, Cr concentrations in the DTA have dropped and apparently stayed low. In 2010, elevated Cr concentrations were found again in the DTA. This study aims to evaluate the status of the total Cr contamination in the surface waters, groundwater, and soils in the area, to clarify the temporal evolution of the total Cr contamination pattern in the DTA. For this, we collected water and soil samples in 2012, 2013, 2014, and 2019 for (hydro)chemical characterization and analyzed new groundwater level data on the development of the cone of depression below the city. Our study indicates that the temporal evolution of the total Cr contamination in the DTA is closely coupled to the groundwater dynamics. The rapid growth of the cone of depression due to excessive pumping resulted (i) in a disconnection of the groundwater table from the heavily contaminated Hazaribagh soils, and (ii) in an increased gradient between the contaminated surface waters and the groundwater, increasing infiltration into the groundwater. Finally, (iii) the further growth of the cone of depression resulted in an inflow of fresh groundwater from the west of Dhaka city, causing a dilution effect. Although in 2017 tanneries were moved out of the Hazaribagh area, the contaminated soils still pose a threat to groundwater quality when groundwater levels would recover.
RESUMO
The Kirkuk region in northern Iraq hosts some of the largest oil fields in the Middle East. Several anticline structures enabled vertical migration and entrapment of the oil. Frequently, complex fracture systems and faults cut across the Eocene and middle Oligocene reservoirs and the cap rock, the Fatha Formation of Miocene age. Seepage of crude oil and oil field brines are therefore a common observation in the anticline axes and contamination of shallow groundwater resources is a major concern. In this study, 65 water samples were collected in the Kirkuk region to analyze and distinguish mixing processes between shallow groundwater resources, uprising oil field brines, and dissolution of gypsum and halite from the Fatha Formation. Hydrochemical analyses of the water samples included general hydrochemistry, stable water isotopes, as well as strontium concentrations and for 22 of the samples strontium isotopes ((87)Sr/(86)Sr). Strontium concentrations increased close to the anticline axes with highest concentrations in the oil field brines (300mg/l). Strontium isotopes proved to be a valuable tool to distinguish mixing processes as isotope signatures of the oil field brines and of waters from the Fatha Formation are significantly different. It could be shown, that mixing of shallow groundwater with oil field brines is occurring close to the major fault zones in the anticlines but high concentrations of strontium in the water samples are mainly due to dissolution from the Fatha Formation.