Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(23): 27750-27758, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37260129

RESUMO

The incorporation of responsive elements into photonic crystals is an effective strategy for fabricating active optical components to be used as sensors, actuators, and modulators. In particular, the combination of simple multilayered dielectric mirrors with optically responsive plasmonic materials has proven to be successful. Recently, Tamm plasmon (TP) modes have emerged as powerful tools for these purposes. These modes arise at the interface between a distributed Bragg reflector (DBR) and a plasmonic layer and can be excited at a normal incidence angle. Although the TP field is located usually at the DBR/metal interface, recent studies have demonstrated that nanoscale corrugation of the metal layer permits access to the TP mode from outside, thus opening exciting perspectives for many real-life applications. In this study, we show that the TP resonance obtained by capping a DBR with a nanostructured layer of silver is responsive to Escherichia coli. Our data indicate that the modification of the TP mode originates from the well-known capability of silver to interact with bacteria, within a process in which the release of Ag+ ions leaves an excess of negative charge in the metal lattice. Finally, we exploited this effect to devise a case study in which we optically differentiated between the presence of proliferative and nonproliferative bacteria using the TP resonance as a read-out. These findings make these devices promising all-optical probes for bacterial metabolic activity, including their response to external stressors.

2.
J Phys Chem Lett ; 13(42): 9903-9909, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36256582

RESUMO

In this work, we observe plasmon-induced hot electron extraction in a heterojunction between indium tin oxide nanocrystals and monolayer molybdenum disulfide. We study the sample with ultrafast differential transmission, exciting the sample at 1750 nm where the intense localized plasmon surface resonance of the indium tin oxide nanocrystals is and where the monolayer molybdenum disulfide does not absorb light. With the excitation at 1750 nm, we observe the excitonic features of molybdenum disulfide in the visible range, close to the exciton of molybdenum disulfide. Such a phenomenon can be ascribed to a charge transfer between indium tin oxide nanocrystals and monolayer molybdenum disulfide upon plasmon excitation. These results are a first step toward the implementation of near-infrared plasmonic materials for photoconversion.

3.
J Phys Chem C Nanomater Interfaces ; 126(7): 3569-3581, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35242271

RESUMO

The search for synthetic materials that mimic natural photosynthesis by converting solar energy into other more useful forms of energy is an ever-growing research endeavor. Graphene-based materials, with their exceptional electronic and optical properties, are exemplary candidates for high-efficiency solar energy harvesting devices. High photoactivity can be conveniently achieved by functionalizing graphene with small molecule organic semiconductors whose band-gaps can be tuned by structural modification, leading to interactions between the π-conjugated electronic systems in both the semiconductor and graphene. Here we investigate the ultrafast transient optical properties of a cross-linked graphene-dye (diphenyl-dithiophenediketopyrrolopyrrole) nanohybrid material, in which oligomers of the organic semiconductor dye are covalently bound to a random network of few-layer graphene flakes, and compare the results to those obtained for the reference dye monomer. Using a combination of ultrafast transient absorption and two-dimensional electronic spectroscopy, we provide substantial evidence for photoinduced charge transfer that occurs within 18 ps in the nanohybrid system. Notably, subpicosecond photoinduced torsional relaxation observed in the constituent dye monomer is absent in the cross-linked nanohybrid system. Through density functional theory calculations, we compare the competing effects of covalent bonding, increasing conjugation length, and the presence of multiple graphene flakes. We find evidence that the observed ultrafast charge transfer process occurs through a superexchange mechanism in which the oligomeric dye bridge provides virtual states enabling charge transfer between graphene-dye covalent bond sites.

4.
Phys Chem Chem Phys ; 24(9): 5317-5322, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35188149

RESUMO

Doped semiconductor nanocrystal-based thin films are widely used for many applications, such as screens, electrochromic windows, light emitting diodes, and solar cells. Herein, we have employed spectroscopic ellipsometry to measure and model the complex dielectric response of indium tin oxide films fabricated by nanocrystal deposition and sintering. The films could be modelled as Bruggemann effective media, allowing estimation of the nanoscale interstitial porosity of the structure. The effective dielectric constants show the possibility of tuning the plasma frequency and the epsilon-near zero condition of the film.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA