Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 8(6)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37887580

RESUMO

In recent research, fake news detection in social networking using Machine Learning (ML) and Deep Learning (DL) models has gained immense attention. The current research article presents the Bio-inspired Artificial Intelligence with Natural Language Processing Deceptive Content Detection (BAINLP-DCD) technique for social networking. The goal of the proposed BAINLP-DCD technique is to detect the presence of deceptive or fake content on social media. In order to accomplish this, the BAINLP-DCD algorithm applies data preprocessing to transform the input dataset into a meaningful format. For deceptive content detection, the BAINLP-DCD technique uses a Multi-Head Self-attention Bi-directional Long Short-Term Memory (MHS-BiLSTM) model. Finally, the African Vulture Optimization Algorithm (AVOA) is applied for the selection of optimum hyperparameters of the MHS-BiLSTM model. The proposed BAINLP-DCD algorithm was validated through simulation using two benchmark fake news datasets. The experimental outcomes portrayed the enhanced performance of the BAINLP-DCD technique, with maximum accuracy values of 92.19% and 92.56% on the BuzzFeed and PolitiFact datasets, respectively.

2.
PeerJ Comput Sci ; 9: e1270, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346587

RESUMO

After February 2020, the majority of the world's governments decided to implement a lockdown in order to limit the spread of the deadly COVID-19 virus. This restriction improved air quality by reducing emissions of particular atmospheric pollutants from industrial and vehicular traffic. In this study, we look at how the COVID-19 shutdown influenced the air quality in Lahore, Pakistan. HAC Agri Limited, Dawn Food Head Office, Phase 8-DHA, and Zeenat Block in Lahore were chosen to give historical data on the concentrations of many pollutants, including PM2.5, PM10 (particulate matter), NO2 (nitrogen dioxide), and O3 (ozone). We use a variety of models, including decision tree, SVR, random forest, ARIMA, CNN, N-BEATS, and LSTM, to compare and forecast air quality. Using machine learning methods, we looked at how each pollutant's levels changed during the lockdown. It has been shown that LSTM estimates the amounts of each pollutant during the lockout more precisely than other models. The results show that during the lockdown, the concentration of atmospheric pollutants decreased, and the air quality index improved by around 20%. The results also show a 42% drop in PM2.5 concentration, a 72% drop in PM10 concentration, a 29% drop in NO2 concentration, and an increase of 20% in O3 concentration. The machine learning models are assessed using the RMSE, MAE, and R-SQUARE values. The LSTM measures NO2 at 4.35%, O3 at 8.2%, PM2.5 at 4.46%, and PM10 at 8.58% in terms of MAE. It is observed that the LSTM model outperformed with the fewest errors when the projected values are compared with the actual values.

3.
Diagnostics (Basel) ; 13(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37238173

RESUMO

Breast cancer is categorized as an aggressive disease, and it is one of the leading causes of death. Accurate survival predictions for both long-term and short-term survivors, when delivered on time, can help physicians make effective treatment decisions for their patients. Therefore, there is a dire need to design an efficient and rapid computational model for breast cancer prognosis. In this study, we propose an ensemble model for breast cancer survivability prediction (EBCSP) that utilizes multi-modal data and stacks the output of multiple neural networks. Specifically, we design a convolutional neural network (CNN) for clinical modalities, a deep neural network (DNN) for copy number variations (CNV), and a long short-term memory (LSTM) architecture for gene expression modalities to effectively handle multi-dimensional data. The independent models' results are then used for binary classification (long term > 5 years and short term < 5 years) based on survivability using the random forest method. The EBCSP model's successful application outperforms models that utilize a single data modality for prediction and existing benchmarks.

4.
Comput Intell Neurosci ; 2022: 2143510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275956

RESUMO

The use of computer-aided diagnostic (CAD) models has been proposed to aid in the detection and classification of breast cancer. In this work, we evaluated the performance of multilayer perceptron neural network and nonlinear support vector machine models to classify breast cancer nodules. From the contour of 569 samples, ten morphological features were used as input to the classifiers. The average results obtained in the set of 50 simulations performed show that the proposed models showed good performance (all exceeded 90.0%) in terms of accuracy in the test set. The nonlinear support vector machine algorithm stands out when compared to the proposed multilayer perceptron neural network algorithm, with 99% accuracy and a 2% false-negative rate. The neural network model presented lower performance than the nonlinear support vector machine classifier. With the application of the proposed models, the average results obtained are promising in the classification of breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Inteligência Artificial , Redes Neurais de Computação , Máquina de Vetores de Suporte , Algoritmos
5.
Front Psychol ; 13: 915596, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874420

RESUMO

The internet of things (IoT) is an emerging paradigm of educational applications and innovative technology in the current era. While capabilities are increasing day by day, there are still many limitations and challenges to utilizing these technologies within E-Learning in higher educational institutes (HEIs). The IoT is well-implemented in the United States of America (USA), United Kingdom (UK), Japan, and China but not in developing countries, including Saudi Arabia, Malaysia, Pakistan, Bangladesh, etc. Few studies have investigated the adoption of IoT in E-Learning within developing countries. Therefore, this research aims to examine the factors influencing IoT adoption for E-Learning to be utilized in HEIs. Further, an adoption model is proposed for IoT-based E-Learning in the contexts of developing countries and provides recommendations for enhancing the IoT adoption for E-Learning in HEIs. The IoT-based E-Learning model categorizes these influencing factors into four groups: individual, organizational, environmental, and technological. Influencing factors are compared along with a detailed description in order to determine which factors should be prioritized for efficient IoT-based E-Learning in HEIs. We identify the privacy (27%), infrastructure readiness (24%), financial constraints (24%), ease of use (20%), support of faculty (18%), interaction (15%), attitude (14%), and network and data security (14%), as the significant E-Learning influencing factors on IoT adoption in HEIs. These findings from the researcher's perspective will show that the national culture has a significant role in the individual, organizational, technological, and environmental behavior toward using new technology in developing countries.

6.
Sensors (Basel) ; 22(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35684640

RESUMO

In recent decades, Vehicular Ad Hoc Networks (VANET) have emerged as a promising field that provides real-time communication between vehicles for comfortable driving and human safety. However, the Internet of Vehicles (IoV) platform faces some serious problems in the deployment of robust authentication mechanisms in resource-constrained environments and directly affects the efficiency of existing VANET schemes. Moreover, the security of the information becomes a critical issue over an open wireless access medium. In this paper, an efficient and secure lightweight anonymous mutual authentication and key establishment (SELWAK) for IoT-based VANETs is proposed. The proposed scheme requires two types of mutual authentication: V2V and V2R. In addition, SELWAK maintains secret keys for secure communication between Roadside Units (RSUs). The performance evaluation of SELWAK affirms that it is lightweight in terms of computational cost and communication overhead because SELWAK uses a bitwise Exclusive-OR operation and one-way hash functions. The formal and informal security analysis of SELWAK shows that it is robust against man-in-the-middle attacks, replay attacks, stolen verifier attacks, stolen OBU attacks, untraceability, impersonation attacks, and anonymity. Moreover, a formal security analysis is presented using the Real-or-Random (RoR) model.


Assuntos
Redes de Comunicação de Computadores , Segurança Computacional , Comunicação , Humanos , Internet
7.
Comput Intell Neurosci ; 2022: 9896490, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669670

RESUMO

Breast cancer affects one in every eight women and is the most common cancer. Aim. To diagnose breast cancer, a potentially fatal condition, using microarray technology, large datasets can now be used. Methods. This study used machine learning algorithms and IOT to classify microarray data. They were created from two sets of data: one with 1919 protein types and one with 24481 protein types for 97 people, 46 of whom had a recurring disease and 51 of whom did not. The apps were written in Python. Each classification algorithm was applied to the data separately, without any feature elimination or size reduction. Second, two alternative feature reduction approaches were compared to the first case. In this case, machine learning techniques like Adaboost and Gradient Boosting Machine are used. Results. Before applying any feature reduction techniques, the logistic regression method produced the best results (90.23%), while the Random Forest method produced good results (67.22%). In the first data, SVM had the highest accuracy rate of 99.23% in both approaches, while in the second data, SVM had the highest rate of 87.87% in RLR and 88.82% in LTE. Deep learning was also done with MLP. The relationship between depth and classification accuracy was studied using it at various depths. After a while, the accuracy rate declined as the number of layers increased. The maximum accuracy rate in the first data was 97.69%, while it was 68.72% in the second. As a result, adding layers to deep learning does not improve classification accuracy.


Assuntos
Neoplasias da Mama , Aprendizado de Máquina , Algoritmos , Neoplasias da Mama/diagnóstico , Feminino , Humanos , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA