Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell Biochem Biophys ; 67(1): 161-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23695783

RESUMO

The ubiquitin pathway regulates diverse functions including protein localization and stability. The complexity of the pathway involving nearly 40 identified E2 conjugating enzymes and over 600 E3 ligases raises the issue of specificity. With the E2s and E3s fitting into a limited number of classes based on bioinformatics, structures, and proven activities, there is not a clear picture as to what would determine which E2/E3 enzyme pair would be functional. There have been many reports of limited E2/E3 activity profiling with a small number of E2s and E3s. We have expanded on this to investigate the activity of ubiquitin E2s covering the majority of the reported classes/families in concert with a number of E3s implicated in a variety of diseases. Using an ELISA-based assay we screened 10 E3 ligases against a panel of 11 E2s to determine which E2/E3 pairs exhibited E3 autoubiquitylation activity. In addition, the ubiquitin chain linkage preference by certain E2/E3 pairs was investigated. Finally, substrate ubiquitylation was assayed for the E3 ligase MuRF1 using various E2/MuRF1 pairs. These studies demonstrate the utility of identifying the correct E2/E3 pair to monitor specific substrate ubiquitylation.


Assuntos
Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Especificidade por Substrato , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
2.
Biochim Biophys Acta ; 1823(11): 2094-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22721718

RESUMO

The ubiquitin proteasome pathway controls the cellular degradation of ~80-90% of the proteome in a highly regulated manner. In this pathway, E3 ligases are responsible for the conjugation of ubiquitin to protein substrates which can lead to their destruction by the 26S proteasome. Aberrant E3 ligases have been implicated in several diseases and are widely recognized as attractive targets for drug discovery. As researchers continue to characterize E3 ligases, additional associations with various disease states are being exposed. The availability of assays that allow rapid analysis of E3 ligase activity is paramount to both biochemical studies and drug discovery efforts aimed at E3 ligases. To address this need, we have developed a homogenous assay for monitoring ubiquitin chain formation using Tandem Ubiquitin Binding Entities (TUBEs). TUBEs bind selectively to polyubiquitin chains versus mono-ubiquitin thus enabling the detection of polyubiquitin chains in the presence of mono-ubiquitin. This assay reports on the proximity between the protein substrate and TUBEs as a result of polyubiquitin chain formation by an E3 ligase. This homogenous assay is a step forward in streamlining an approach for characterizing and quantitating E3 ligase activity in a rapid and cost effective manner. This article is part of a Special Issue entitled: Ubiquitin Drug Discovery and Diagnostics.


Assuntos
Proteínas Musculares/metabolismo , Poliubiquitina/metabolismo , Fatores de Transcrição/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Ligação Proteica , Sequências de Repetição em Tandem , Proteínas com Motivo Tripartido , Ubiquitinação
3.
Cell Biochem Biophys ; 60(1-2): 113-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21448668

RESUMO

Progressive muscle wasting, also known as myopathy or muscle atrophy is a debilitating and life-threatening disorder. Myopathy is a pathological condition of many diseases including cancer, diabetes, COPD, and AIDS and is a natural consequence of inactivity and aging (sarcopenia). Muscle atrophy occurs when there is a net loss of muscle mass resulting in a change in the balance between protein synthesis and protein degradation. The ubiquitin pathway and specific ubiquitin pathway enzymes have been directly implicated in the progression of atrophy. The ubiquitin E3 ligase Muscle-specific RING Finger E3 ligase (MuRF1) is upregulated and increases protein degradation and muscle wasting in numerous muscle atrophy models. The inhibition of MuRF1 could be a novel mechanism to prevent or reverse muscle wasting associated with various pathologies. We screened a small molecule library for inhibitors to MuRF1 activity and identified P013222, an inhibitor of MuRF1 autoubiquitylation. Further, P013222 was shown to inhibit MuRF1-dependent substrate ubiquitylation, and was active in inhibiting MuRF1 in a cellular atrophy model. Thus MuRF1 can be targeted in a specific manner and produce positive results in cellular atrophy models.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteínas Musculares/antagonistas & inibidores , Atrofia Muscular/prevenção & controle , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Animais , Biocatálise/efeitos dos fármacos , Western Blotting , Linhagem Celular , Dexametasona/farmacologia , Relação Dose-Resposta a Droga , Glucocorticoides/farmacologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Atrofia Muscular/metabolismo , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/efeitos dos fármacos , Mioblastos Esqueléticos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequenas , Especificidade por Substrato , Proteínas com Motivo Tripartido , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos
4.
J Biomol Screen ; 15(10): 1220-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20864734

RESUMO

The ubiquitin-proteasome system is central to the regulation of numerous cellular events, and dysregulation may lead to disease pathogenesis. E3 ubiquitin ligases typically function in concert with E1 and E2 enzymes to recruit specific substrates, thereby coordinating their ubiquitylation and subsequent proteasomal degradation or cellular activity. E3 ligases have been implicated in a wide range of pathologies, and monitoring their activity in a rapid and cost-effective manner would be advantageous in drug discovery. The relative lack of high-throughput screening (HTS)-compliant E3 ligase assays has significantly hindered the discovery of E3 inhibitors. Herein, the authors describe a novel HTS-compliant E3 ligase assay platform that takes advantage of a ubiquitin binding domain's inherent affinity for polyubiquitin chains, permitting the analysis of ubiquitin chain formation in an E3 ligase-dependent manner. This assay has been used successfully with members of both the RING and HECT families, demonstrating the platform's broad utility for analyzing a wide range of E3 ligases. The utility of the assay platform is demonstrated by the identification of inhibitors of the E3 ligase CARP2. As the number of E3 ligases associated with various disease states increases, the ability to quantitate the activity of these enzymes in an expeditious manner becomes imperative in drug discovery.


Assuntos
Enzimas Reparadoras do DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/antagonistas & inibidores , Ensaios de Triagem em Larga Escala/métodos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Descoberta de Drogas , Humanos , Luminescência , Proteínas do Tecido Nervoso/metabolismo , Poliubiquitina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequenas , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
5.
Biochem Soc Trans ; 38(Pt 1): 132-6, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20074047

RESUMO

Dysregulation of the UPS (ubiquitin-proteasome system) has been implicated in a wide range of pathologies including cancer, neurodegeneration and viral infection. Inhibiting the proteasome has been shown to be an effective therapeutic strategy in humans; however, toxicity with this target remains high. E3s (Ub-protein ligases) represent an alternative attractive therapeutic target in the UPS. In this paper, we will discuss current platforms that report on E3 ligase activity and can detect E3 inhibitors, and underline the advantages and disadvantages of each approach.


Assuntos
Inibidores de Proteases/metabolismo , Inibidores de Proteassoma , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina/metabolismo , Bioensaio/métodos , Humanos , Doenças do Sistema Imunitário/tratamento farmacológico , Doenças do Sistema Imunitário/enzimologia , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
6.
IDrugs ; 12(12): 750-3, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19943215

RESUMO

The Ubiquitin Drug Discovery & Diagnostics conference, held in Philadelphia, included topics covering new therapeutic developments in the field of ubiquitin drug research. This conference report highlights selected presentations on emerging ubiquitin targets in oncology and on proteasome inhibitor therapy for the treatment of multiple myeloma. Investigational drugs discussed include MLN-4924 and MLN-9708 (both Millennium Pharmaceuticals Inc), P-005091 (Progenra Inc), CEP-18770 (Cephalon Inc) and carfilzomib (Proteolix Inc).


Assuntos
Sistemas de Liberação de Medicamentos , Descoberta de Drogas , Ubiquitina/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Desenho de Fármacos , Drogas em Investigação/farmacologia , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/fisiopatologia , Neoplasias/tratamento farmacológico , Neoplasias/fisiopatologia , Inibidores de Proteassoma
7.
Future Oncol ; 3(2): 191-9, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17381419

RESUMO

Tagging proteins with mono- or poly-ubiquitin is now recognized as a multifaceted and universal means of regulating cell growth and physiology. It does so by controlling the cellular lifetime of nearly all eukaryotic proteins and the cellular localization of many critical proteins. Enzymes of the ubiquitin pathway add (ligases) or remove (deubiquitinases [DUBs]) ubiquitin tags to or from their target proteins in a selective fashion. Similarly to the kinases and their corresponding phosphatases, ubiquitin ligases and DUBs have become actively studied molecular oncology targets for drug discovery. Approximately 79 functional DUBs exist in the human proteome, suggesting that selective intervention is a reasonable therapeutic objective, with the goal of downregulating or ablating oncogene products or, alternatively, upregulating or sparing tumor suppressors. In the following review, this fascinating class of regulatory enzymes will be described, and specific examples of DUBs that are viable targets for anticancer therapy will be considered.


Assuntos
Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Ubiquitina/efeitos dos fármacos , Ubiquitina/metabolismo , Humanos , Proteína NEDD8 , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/efeitos dos fármacos , Ubiquitina Tiolesterase/efeitos dos fármacos , Ubiquitinas/efeitos dos fármacos
8.
Protein Sci ; 15(1): 182-9, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16322573

RESUMO

Despite the availability of numerous gene fusion systems, recombinant protein expression in Escherichia coli remains difficult. Establishing the best fusion partner for difficult-to-express proteins remains empirical. To determine which fusion tags are best suited for difficult-to-express proteins, a comparative analysis of the newly described SUMO fusion system with a variety of commonly used fusion systems was completed. For this study, three model proteins, enhanced green fluorescent protein (eGFP), matrix metalloprotease-13 (MMP13), and myostatin (growth differentiating factor-8, GDF8), were fused to the C termini of maltose-binding protein (MBP), glutathione S-transferase (GST), thioredoxin (TRX), NUS A, ubiquitin (Ub), and SUMO tags. These constructs were expressed in E. coli and evaluated for expression and solubility. As expected, the fusion tags varied in their ability to produce tractable quantities of soluble eGFP, MMP13, and GDF8. SUMO and NUS A fusions enhanced expression and solubility of recombinant proteins most dramatically. The ease at which SUMO and NUS A fusion tags were removed from their partner proteins was then determined. SUMO fusions are cleaved by the natural SUMO protease, while an AcTEV protease site had to be engineered between NUS A and its partner protein. A kinetic analysis showed that the SUMO and AcTEV proteases had similar KM values, but SUMO protease had a 25-fold higher kcat than AcTEV protease, indicating a more catalytically efficient enzyme. Taken together, these results demonstrate that SUMO is superior to commonly used fusion tags in enhancing expression and solubility with the distinction of generating recombinant protein with native sequences.


Assuntos
Clonagem Molecular/métodos , Fusão Gênica , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteína SUMO-1/biossíntese , Proteína SUMO-1/genética , Cisteína Endopeptidases/biossíntese , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Endopeptidases/biossíntese , Endopeptidases/química , Endopeptidases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas Recombinantes de Fusão/química , Proteína SUMO-1/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA