Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Virol ; 95(1)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33087469

RESUMO

Rift Valley fever virus (RVFV) is a highly pathogenic zoonotic arbovirus endemic in many African countries and the Arabian Peninsula. Animal infections cause high rates of mortality and abortion among sheep, goats, and cattle. In humans, an estimated 1 to 2% of RVFV infections result in severe disease (encephalitis, hepatitis, or retinitis) with a high rate of lethality when associated with hemorrhagic fever. The RVFV NSs protein, which is the main virulence factor, counteracts the host innate antiviral response to favor viral replication and spread. However, the mechanisms underlying RVFV-induced cytopathic effects and the role of NSs in these alterations remain for the most part unknown. In this work, we have analyzed the effects of NSs expression on the actin cytoskeleton while conducting infections with the NSs-expressing virulent (ZH548) and attenuated (MP12) strains of RVFV and the non-NSs-expressing avirulent (ZH548ΔNSs) strain, as well as after the ectopic expression of NSs. In macrophages, fibroblasts, and hepatocytes, NSs expression prevented the upregulation of Abl2 (a major regulator of the actin cytoskeleton) expression otherwise induced by avirulent infections and identified here as part of the antiviral response. The presence of NSs was also linked to an increased mobility of ZH548-infected cells compared to ZH548ΔNSs-infected fibroblasts and to strong changes in cell morphology in nonmigrating hepatocytes, with reduction of lamellipodia, cell spreading, and dissolution of adherens junctions reminiscent of the ZH548-induced cytopathic effects observed in vivo Finally, we show evidence of the presence of NSs within long actin-rich structures associated with NSs dissemination from NSs-expressing toward non-NSs-expressing cells.IMPORTANCE Rift Valley fever virus (RVFV) is a dangerous human and animal pathogen that was ranked by the World Health Organization in 2018 as among the eight pathogens of most concern for being likely to cause wide epidemics in the near future and for which there are no, or insufficient, countermeasures. The focus of this work is to address the question of the mechanisms underlying RVFV-induced cytopathic effects that participate in RVFV pathogenicity. We demonstrate here that RVFV targets cell adhesion and the actin cytoskeleton at the transcriptional and cellular level, affecting cell mobility and inducing cell shape collapse, along with distortion of cell-cell adhesion. All these effects may participate in RVFV-induced pathogenicity, facilitate virulent RVFV dissemination, and thus constitute interesting potential targets for future development of antiviral therapeutic strategies that, in the case of RVFV, as with several other emerging arboviruses, are presently lacking.


Assuntos
Citoesqueleto de Actina/genética , Proteínas Tirosina Quinases/genética , Febre do Vale de Rift/patologia , Vírus da Febre do Vale do Rift/patogenicidade , Proteínas não Estruturais Virais/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Adesão Celular , Linhagem Celular , Movimento Celular , Forma Celular , Interações Hospedeiro-Patógeno , Imunidade Inata , Camundongos , Mutação , Proteínas Tirosina Quinases/metabolismo , Febre do Vale de Rift/metabolismo , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/metabolismo , Proteínas não Estruturais Virais/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Replicação Viral
2.
Sci Rep ; 6: 33047, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27605042

RESUMO

Pericentromeric heterochromatin (PCH) gives rise to highly dense chromatin sub-structures rich in the epigenetic mark corresponding to the trimethylated form of lysine 9 of histone H3 (H3K9me3) and in heterochromatin protein 1α (HP1α), which regulate genome expression and stability. We demonstrate that Tau, a protein involved in a number of neurodegenerative diseases including Alzheimer's disease (AD), binds to and localizes within or next to neuronal PCH in primary neuronal cultures from wild-type mice. Concomitantly, we show that the clustered distribution of H3K9me3 and HP1α, two hallmarks of PCH, is disrupted in neurons from Tau-deficient mice (KOTau). Such altered distribution of H3K9me3 that could be rescued by overexpressing nuclear Tau protein was also observed in neurons from AD brains. Moreover, the expression of PCH non-coding RNAs, involved in PCH organization, was disrupted in KOTau neurons that displayed an abnormal accumulation of stress-induced PCH DNA breaks. Altogether, our results demonstrate a new physiological function of Tau in directly regulating neuronal PCH integrity that appears disrupted in AD neurons.


Assuntos
Centrômero/genética , Reparo do DNA/genética , Heterocromatina/genética , Neurônios/metabolismo , Transcrição Gênica/genética , Proteínas tau/genética , Animais , Encéfalo/metabolismo , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Quebras de DNA , Epigênese Genética/genética , Histonas/genética , Humanos , Lisina/genética , Camundongos , Camundongos Knockout
3.
Mol Cell Biol ; 36(1): 13-29, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26459757

RESUMO

Rapid upregulation of interferon beta (IFN-ß) expression following virus infection is essential to set up an efficient innate antiviral response. Biological roles related to the antiviral and immune response have also been associated with the constitutive production of IFN-ß in naive cells. However, the mechanisms capable of modulating constitutive IFN-ß expression in the absence of infection remain largely unknown. In this work, we demonstrate that inhibition of the kinase glycogen synthase kinase 3 (GSK-3) leads to the upregulation of the constitutive level of IFN-ß expression in noninfected cells, provided that GSK-3 inhibition is correlated with the binding of ß-catenin to the IFN-ß promoter. Under these conditions, IFN-ß expression occurred through the T-cell factor (TCF) binding sites present on the IFN-ß promoter independently of interferon regulatory factor 3 (IRF3). Enhancement of the constitutive level of IFN-ß per se was able to confer an efficient antiviral state to naive cells and acted in synergy with virus infection to stimulate virus-induced IFN-ß expression. Further emphasizing the role of ß-catenin in the innate antiviral response, we show here that highly pathogenic Rift Valley fever virus (RVFV) targets the Wnt/ß-catenin pathway and the formation of active TCF/ß-catenin complexes at the transcriptional and protein level in RVFV-infected cells and mice.


Assuntos
Interferon beta/metabolismo , Regiões Promotoras Genéticas , Linfócitos T/metabolismo , Ativação Transcricional/fisiologia , Regulação para Cima , beta Catenina/metabolismo , Animais , Sítios de Ligação , Quinase 3 da Glicogênio Sintase/metabolismo , Interferon beta/genética , Camundongos , Vírus da Febre do Vale do Rift , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição TCF/genética , Ativação Transcricional/genética
4.
J Virol ; 86(20): 11333-44, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22896612

RESUMO

Rift Valley fever virus (RVFV) is a highly pathogenic Phlebovirus that infects humans and ruminants. Initially confined to Africa, RVFV has spread outside Africa and presently represents a high risk to other geographic regions. It is responsible for high fatality rates in sheep and cattle. In humans, RVFV can induce hepatitis, encephalitis, retinitis, or fatal hemorrhagic fever. The nonstructural NSs protein that is the major virulence factor is found in the nuclei of infected cells where it associates with cellular transcription factors and cofactors. In previous work, we have shown that NSs interacts with the promoter region of the beta interferon gene abnormally maintaining the promoter in a repressed state. In this work, we performed a genome-wide analysis of the interactions between NSs and the host genome using a genome-wide chromatin immunoprecipitation combined with promoter sequence microarray, the ChIP-on-chip technique. Several cellular promoter regions were identified as significantly interacting with NSs, and the establishment of NSs interactions with these regions was often found linked to deregulation of expression of the corresponding genes. Among annotated NSs-interacting genes were present not only genes regulating innate immunity and inflammation but also genes regulating cellular pathways that have not yet been identified as targeted by RVFV. Several of these pathways, such as cell adhesion, axonal guidance, development, and coagulation were closely related to RVFV-induced disorders. In particular, we show in this work that NSs targeted and modified the expression of genes coding for coagulation factors, demonstrating for the first time that this hemorrhagic virus impairs the host coagulation cascade at the transcriptional level.


Assuntos
Fatores de Coagulação Sanguínea/genética , DNA/genética , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Chlorocebus aethiops , Imunoprecipitação da Cromatina , DNA/metabolismo , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno/genética , Interferon beta/genética , Análise Serial de Proteínas , RNA Mensageiro/genética , Febre do Vale de Rift/genética , Febre do Vale de Rift/patologia , Vírus da Febre do Vale do Rift/patogenicidade , Transcrição Gênica , Células Vero , Proteínas não Estruturais Virais/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA