Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36500273

RESUMO

Lignocellulosic biomass (LCB) has remained a latent alternative resource to be the main substitute for oil and its derivatives in a biorefinery concept. However, its complex structure and the underdeveloped technologies for its large-scale processing keep it in a state of constant study trying to establish a consolidated process. In intensive processes, enzymes have been shown to be important molecules for the fractionation and conversion of LCB into biofuels and high-value-added molecules. However, operational challenges must be overcome before enzyme technology can be the main resource for obtaining second-generation sugars. The use of additives is shown to be a suitable strategy to improve the saccharification process. This review describes the mechanisms, roles, and effects of using additives, such as surfactants, biosurfactants, and non-catalytic proteins, separately and integrated into the enzymatic hydrolysis process of lignocellulosic biomass. In doing so, it provides a technical background in which operational biomass processing hurdles such as solids and enzymatic loadings, pretreatment burdens, and the unproductive adsorption phenomenon can be addressed.


Assuntos
Lignina , Tensoativos , Lignina/química , Fermentação , Biomassa , Hidrólise , Biocombustíveis
2.
Bioresour Technol ; 301: 122706, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31945682

RESUMO

Bioemulsifiers are surface active compounds which could be potentially used in food processing, cosmetic sector and oil recovery. Sugarcane straw (SS), was used as the raw substrate for the production of bio-emulsifiers (BE) by Cutaneotrichosporon mucoides. Three different delignification strategies using dilute sodium hydroxide, sodium sulfite and ammonium hydroxide followed by enzymatic hydrolysis (Cellic CTec 2, 7.5% total solids, 15 FPU/g, 72 h) were studied. Enzyme hydrolysis of ammonium hydroxide pretreated SS showed a maximum of 62.19 ± 0.74 g/l total reducing sugars with 88.35% hydrolytic efficiency (HE) followed by sodium hydroxide (60.06 ± 0.33 g/l; 85.40% HE) and sodium sulfite pretreated SS (57.22 ± 0.52 g/l; 84.71% HE), respectively. The ultrastructure of SS (native and delignified) by fourier transform-infrared and near infrared spectroscopy, revealed notable structural differences. The fermentation of hydrolysates by C. mucoides into bioemulsifiers showing emulsification index (EI) of 54.33%, 48.66% and 32.66% from sodium sulfite, sodium hydroxide, and ammonium hydroxide pretreated SS, respectively.


Assuntos
Saccharum , Trichosporon , Hidróxido de Amônia , Fermentação , Hidrólise , Hidróxido de Sódio
3.
Front Microbiol ; 8: 1873, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29018432

RESUMO

Although Azospirillum strains used in commercial inoculant formulations presents diazotrophic activity, it has been reported that their ability to produce phytohormones plays a pivotal role in plant growth-promotion, leading to a general recommendation of its use in association with regular N-fertilizer doses. In addition, a high variability in the effectiveness of Azospirillum inoculants is still reported under field conditions, contributing to the adoption of the inoculation technology as an additional management practice rather than its use as an alternative practice to the use of chemical inputs in agriculture. To investigate whether the content of stress-resistance biopolymers would improve the viability and performance of Azospirillum inoculants when used as substitute of N-fertilizers, biomass of A. brasilense strain Ab-V5 enriched in exopolysaccharides (EPS) and polyhydroxybutirate (PHB) was produced using a new culture medium developed by factorial mixture design, and the effectiveness of resulting inoculants was evaluated under field conditions. The culture medium formulation extended the log phase of A. brasilense cultures, which presented higher cell counts and increased EPS and PHB contents than observed in the cultures grown in the OAB medium used as control. An inoculation trial with maize conducted under greenhouse conditions and using the biopolymers-enriched Ab-V5 cells demonstrated the importance of EPS and PHB to the long term bacterial viability in soil and to the effectiveness of inoculation. The effectiveness of liquid and peat inoculants prepared with Ab-V5 cells enriched with EPS and PHB was also evaluated under field conditions, using maize as target crop along different seasons, with the inoculants applied directly over seeds or at topdressing under limiting levels of N-fertilization. No additive effect on yield resulted from inoculation under high N fertilizer input, while inoculated plants grown under 80% reduction in N fertilizer showed yields at levels compared to fully fertilized plants, regardless the inoculation method. The presented data highlights the feasibility to partially substitute the N-fertilizer demand in non-legume crops using high-quality inoculant formulations, prepared with diazotrophic bacteria enriched with stress-resistance biopolymers that confer increased viability an effectiveness to the bacterial cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA