Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Genom ; 9(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37079454

RESUMO

Globally, the anaerobic bacterium Clostridium perfringens causes severe disease in a wide array of hosts; however, C. perfringens strains are also carried asymptomatically. Accessory genes are responsible for much of the observed phenotypic variation and virulence within this species, with toxins frequently encoded on conjugative plasmids and many isolates carrying up to 10 plasmids. Despite this unusual biology, current genomic analyses have largely excluded isolates from healthy hosts or environmental sources. Accessory genomes, including plasmids, also have often been excluded from broader scale phylogenetic investigations. Here we interrogate a comprehensive collection of 464 C. perfringens genomes and identify the first putative non-conjugative enterotoxin (CPE)-encoding plasmids and a putative novel conjugative locus (Bcp) with sequence similarity to a locus reported from Clostridium botulinum. We sequenced and archived 102 new C. perfringens genomes, including those from rarely sequenced toxinotype B, C, D and E isolates. Long-read sequencing of 11 C. perfringens strains representing all toxinotypes (A-G) identified 55 plasmids from nine distinct plasmid groups. Interrogation of the 464 genomes in this collection identified 1045 plasmid-like contigs from the nine plasmid families, with a wide distribution across the C. perfringens isolates. Plasmids and plasmid diversity play an essential role in C. perfringens pathogenicity and broader biology. We have expanded the C. perfringens genome collection to include temporal, spatial and phenotypically diverse isolates including those carried asymptomatically in the gastrointestinal microbiome. This analysis has resulted in the identification of novel C. perfringens plasmids whilst providing a comprehensive understanding of species diversity.


Assuntos
Toxinas Bacterianas , Clostridium perfringens , Humanos , Toxinas Bacterianas/genética , Filogenia , Composição de Bases , Análise de Sequência de DNA , RNA Ribossômico 16S , Plasmídeos/genética
2.
Viruses ; 12(10)2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086653

RESUMO

Our knowledge of the diversity and evolution of the virosphere will likely increase dramatically with the study of microbial eukaryotes, including the microalgae within which few RNA viruses have been documented. By combining total RNA sequencing with sequence and structural-based homology detection, we identified 18 novel RNA viruses in cultured samples from two major groups of microbial algae: the chlorophytes and the chlorarachniophytes. Most of the RNA viruses identified in the green algae class Ulvophyceae were related to the Tombusviridae and Amalgaviridae viral families commonly associated with land plants. This suggests that the evolutionary history of these viruses extends to divergence events between algae and land plants. Seven Ostreobium sp-associated viruses exhibited sequence similarity to the mitoviruses most commonly found in fungi, compatible with horizontal virus transfer between algae and fungi. We also document, for the first time, RNA viruses associated with chlorarachniophytes, including the first negative-sense (bunya-like) RNA virus in microalgae, as well as a distant homolog of the plant virus Virgaviridae, potentially signifying viral inheritance from the secondary chloroplast endosymbiosis that marked the origin of the chlorarachniophytes. More broadly, these data suggest that the scarcity of RNA viruses in algae results from limited investigation rather than their absence.


Assuntos
Clorófitas/virologia , Perfilação da Expressão Gênica , Filogenia , Vírus de RNA/classificação , Evolução Molecular , Fungos/virologia , Interações entre Hospedeiro e Microrganismos , Vírus de RNA/enzimologia , RNA Polimerase Dependente de RNA , Simbiose
3.
Mol Ecol ; 26(19): 5344-5357, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28748644

RESUMO

The health and functioning of reef-building corals is dependent on a balanced association with prokaryotic and eukaryotic microbes. The coral skeleton harbours numerous endolithic microbes, but their diversity, ecological roles and responses to environmental stress, including ocean acidification (OA), are not well characterized. This study tests whether pH affects the diversity and structure of prokaryotic and eukaryotic algal communities associated with skeletons of Porites spp. using targeted amplicon (16S rRNA gene, UPA and tufA) sequencing. We found that the composition of endolithic communities in the massive coral Porites spp. inhabiting a naturally high pCO2 reef (avg. pCO2 811 µatm) is not significantly different from corals inhabiting reference sites (avg. pCO2 357 µatm), suggesting that these microbiomes are less disturbed by OA than previously thought. Possible explanations may be that the endolithic microhabitat is highly homeostatic or that the endolithic micro-organisms are well adapted to a wide pH range. Some of the microbial taxa identified include nitrogen-fixing bacteria (Rhizobiales and cyanobacteria), algicidal bacteria in the phylum Bacteroidetes, symbiotic bacteria in the family Endozoicomoniaceae, and endolithic green algae, considered the major microbial agent of reef bioerosion. Additionally, we test whether host species has an effect on the endolithic community structure. We show that the endolithic community of massive Porites spp. is substantially different and more diverse than that found in skeletons of the branching species Seriatopora hystrix and Pocillopora damicornis. This study reveals highly diverse and structured microbial communities in Porites spp. skeletons that are possibly resilient to OA.


Assuntos
Antozoários/microbiologia , Dióxido de Carbono/química , Microbiota , Animais , Clorófitas/classificação , Recifes de Corais , Cianobactérias/classificação , Papua Nova Guiné , RNA Ribossômico 16S/genética , Água do Mar/química
4.
Sci Rep ; 6: 31508, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27545322

RESUMO

Bacteria, fungi and green algae are common inhabitants of coral skeletons. Their diversity is poorly characterized because they are difficult to identify with microscopy or environmental sequencing, as common metabarcoding markers have low phylogenetic resolution and miss a large portion of the biodiversity. We used a cost-effective protocol and a combination of markers (tufA, 16S rDNA, 18S rDNA and 23S rDNA) to characterize the microbiome of 132 coral skeleton samples. We identified a wide range of prokaryotic and eukaryotic organisms, many never reported in corals before. We additionally investigated the phylogenetic diversity of the green algae-the most abundant eukaryotic member of this community, for which previous literature recognizes only a handful of endolithic species. We found more than 120 taxonomic units (near species level), including six family-level lineages mostly new to science. The results suggest that the existence of lineages with an endolithic lifestyle predates the existence of modern scleractinian corals by ca. 250my, and that this particular niche was independently invaded by over 20 lineages in green algae evolution. These results highlight the potential of the multi-marker approach to assist in species discovery and, when combined with a phylogenetic framework, clarify the evolutionary origins of host-microbiota associations.


Assuntos
Antozoários , Evolução Biológica , Código de Barras de DNA Taxonômico , Endófitos/genética , Microalgas/genética , Microbiota/fisiologia , Animais , Antozoários/genética , Antozoários/microbiologia , Endófitos/crescimento & desenvolvimento , Microalgas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA