Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Carbohydr Polym ; 340: 122300, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38858007

RESUMO

The chemical modification of biopolymers to enhance their functional properties in the food, cosmetic, and pharmaceutical industries is an area of particular interest today. In this study, different molecular weight dextrans were chemically modified for the first time with octenyl succinic anhydride (OSA). This reaction involves an esterification process wherein the hydroxy groups of dextran are partially substituted by a carbonaceous chain, imparting hydrophobic properties to dextran molecules and, consequently, an amphiphilic nature. To assess and quantify the incorporation of OSA into the dextran structure, reaction products were analysed using NMR and FTIR. Additionally, the thermal properties, the Z-potential and the foaming and emulsifying capacity of both native and modified dextrans were examined. The introduction of OSA groups to dextran molecules, with degrees of substitution between 0.028 and 0.058, increased the zeta potential and the thermal stability of the polymer. Furthermore, the chemical modification of dextran backbone with this radical conferred a hydrophobic nature to the biopolymer, which enhance its foaming and emulsifying capacity. Therefore, these results demonstrate that the incorporation of hydrophobic moieties into dextran polymers improves their functional properties and broadens their potential applications in the industry.

2.
Microorganisms ; 12(1)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38257944

RESUMO

Antimicrobial resistance (AMR) has emerged as a global health challenge, sparking worldwide interest in exploring the antimicrobial potential of natural compounds as an alternative to conventional antibiotics. In recent years, one area of focus has been the utilization of bacteriophages and their derivative proteins. Specifically, phage lytic proteins, or endolysins, are specialized enzymes that induce bacterial cell lysis and can be efficiently produced and purified following overexpression in bacteria. Nonetheless, a significant limitation of these proteins is their vulnerability to certain environmental conditions, which may impair their effectiveness. Encapsulating endolysins in vesicles could mitigate this issue by providing added protection to the proteins, enabling controlled release, and enhancing their stability, particularly at temperatures around 4 °C. In this work, the chimeric lytic protein CHAPSH3b was encapsulated within non-ionic surfactant-based vesicles (niosomes) created using the thin film hydrating method (TFH). These protein-loaded niosomes were then characterized, revealing sizes in the range of 30-80 nm, zeta potentials between 30 and 50 mV, and an encapsulation efficiency (EE) of 50-60%. Additionally, with the objective of exploring their potential application in the food industry, these endolysin-loaded niosomes were incorporated into gelatine films. This was carried out to evaluate their stability and antimicrobial efficacy against Staphylococcus aureus.

3.
Waste Manag ; 174: 31-43, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38006756

RESUMO

This study aimed to assess the potential of sewage sludge, a significant residue of wastewater treatment plants (WWTPs), as a sustainable resource for producing a bio-based material for hermetic bags (BMHB), in order to reduce the dependency on petroleum-derived plastics. The approach involved the application of thermal hydrolysis to solubilize sewage sludge, and it systematically examined critical process parameters, including temperature (120-150 °C), residence time (1-4 h), and medium pH (6.6-10). Results revealed that alkaline thermal hydrolysis significantly enhanced biomolecule solubilization, particularly proteins (289 ± 1 mg/gVSSo), followed by humic-like substances (144 ± 6 mg/gVSSo) and carbohydrates (49 ± 2 mg/gVSSo). This condition also increased the presence of large-and medium-sized compounds, thereby enhancing BMHB mechanical resistance, with puncture resistance values reaching 63.7 ± 0.2 N/mm. Effective retention of UV light within the 280-400 nm range was also observed. All BMHB samples exhibited similar properties, including water vapor permeability (WVP) (∼3.9 g * mm/m2 * h * kPa), hydrophilicity (contact angles varied from 35.4° ± 0.3 to 64° ± 5), solubility (∼95%), and thermal stability (∼74% degradation at 700 °C). Notably, BMHB proved to be an eco-friendly packaging for acetamiprid, an agricultural pesticide, preventing direct human exposure to harmful substances. Testing indicated rapid pesticide release within 5 min of BMHB immersion in water, with only 5% of BMHB residues remaining after 20 min. Additionally, the application of this material in soil was considered safe, as it met regulatory limits for heavy metal content and exhibited an absence of microorganisms.


Assuntos
Praguicidas , Esgotos , Humanos , Esgotos/química , Temperatura , Agricultura , Solo , Hidrólise
4.
Molecules ; 28(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067564

RESUMO

Obtaining peptides with antioxidant properties by enzymatic hydrolysis has been widely described; however, the use of non-enzymatic methods to obtain peptides with antioxidant capacities has been poorly investigated. In this study, non-soluble proteins obtained from delipidated egg yolk granules were hydrolyzed with trypsin, and with a non-enzymatic method using sub-critical water hydrolysis under a non-oxidizing (nitrogen) and oxidizing (oxygen) atmosphere. The effect of the sub-critical water hydrolysis on the amino acids' composition of the hydrolysates was assessed. Furthermore, the antioxidant capacities of the hydrolysates were evaluated using the ABTS•+ scavenging assay, the DPPH radical scavenging activity assay, and by measuring the reducing power of the peptides, the peptides' ferrous ion chelating capacities, and the antioxidant effect of the peptides on beef homogenates. The hydrolysate obtained by sub-critical water hydrolysis under a nitrogen stream showed similar or better results in the antioxidant tests than those obtained using trypsin hydrolysis, except in the ferrous chelating capacity, where the trypsin hydrolysate showed the best performance. The oxidizing environment promoted by the oxygen in the other sub-critical water hydrolysis method tested produced the peptides with the lowest antioxidant capacities, due to changes in the primary structure of the peptides. These results suggest that the sub-critical water hydrolysis method under a nitrogen stream, in comparison with the enzymatic hydrolysis, is a reliable method to obtain peptides with good antioxidant capacities.


Assuntos
Antioxidantes , Hidrolisados de Proteína , Animais , Bovinos , Antioxidantes/farmacologia , Antioxidantes/química , Hidrólise , Hidrolisados de Proteína/química , Tripsina/química , Gema de Ovo , Peptídeos/química , Nitrogênio , Oxigênio
5.
Heliyon ; 9(10): e21002, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37867908

RESUMO

In the present work, the inhibitory effect of the peptide fractions, obtained through enzymatic hydrolysis of bovine plasma was evaluated, on the enzyme used in the reaction (Alcalase 2.4 L). In this sense, Ultra-filtered peptide fractions of different molecular sizes (A: Fraction>10; B: Fraction 10-3 kDa; and C: Fraction <3 kDa), were used to verify the impact on the total hydrolysis rate. The Fractions between 3 and 10 kDa were refined to fit a conceptual kinetic model which considers inhibition by product and substrate. Additionally, the inactivation of the enzyme through the reaction time was evaluated and its effects incorporated into the model. It was shown that some peptides released in the successive stages of the reaction can in turn inhibit the activity of the hydrolyzing enzyme. The model evaluated suggests a time-varying expression of inhibition parameters as a function of the initial substrate concentration in the reaction. This is based on the kinetic changes of the product profiles for each reaction time in the evaluated operating conditions (S0 variable). A greater inhibitory effect due to the products is evidenced when the reaction occurs with a higher load of the initial substrate (S0 = 20 g/L).

6.
Membranes (Basel) ; 13(10)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37887998

RESUMO

Every year, approximately 300 million tons of petroleum-based plastics is manufactured worldwide, and these plastics cause significant environmental issues due to their non-biodegradable nature and emission of toxic gases upon incineration [...].

7.
Membranes (Basel) ; 13(9)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37755208

RESUMO

Birch sap consists of a natural water-based solution with valuable compounds such as minerals, sugars, organic acids and phenolic compounds that can be used advantageously in the preparation of edible films. In this study, gelatine- and casein-based films were prepared using birch sap as biopolymer solvent and source of bioactive compounds with the aim of developing new bioactive materials for food packaging. The physical, mechanical, barrier, antioxidant and iron-chelating properties of the obtained films were investigated. Birch sap enhanced the mechanical properties of the films by increasing puncture strength and flexibility, as well as their ultraviolet-visible light barrier properties. In addition, the presence of bioactive compounds endowed the birch sap films with an antioxidant capacity of almost 90% and an iron-chelating capacity of 40-50% with respect to the control films. Finally, to test these films as food packaging material, a photosensitive curcumin solution was packed and exposed to ultraviolet light. Tested films were able to protect curcumin against photodegradation, and the presence of bioactive compounds inside the birch-sap-enriched materials offered an additional 10% photoprotective effect compared to control films. Results showed the potential of birch sap as an environmentally friendly biopolymer solvent and plasticizer that can improve the mechanical and photoprotective properties of the prepared materials.

8.
Pharmaceutics ; 14(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36559121

RESUMO

These days, the eradication of bacterial infections is more difficult due to the mechanism of resistance that bacteria have developed towards traditional antibiotics. One of the medical strategies used against bacteria is the therapy with drug delivery systems. Non-ionic vesicles are nanomaterials with good characteristics for encapsulating drugs, due to their bioavailability and biodegradability, which allow the drugs to reach the specific target and reduce their side effects. In this work, the antibiotic Rifamycin S was encapsulated. The rifamycin antibiotics family has been widely used against Mycobacterium tuberculosis, but recent studies have also shown that rifamycin S and rifampicin derivatives have bactericidal activity against Staphylococcus epidermidis and Staphylococcus aureus. In this work, a strain of S. aureus was selected to study the antimicrobial activity through Minimum Inhibitory Concentration (MIC) assay. Three formulations of niosomes were prepared using the thin film hydration method by varying the composition of the aqueous phase, which included MilliQ water, glycerol solution, or PEG400 solution. Niosomes with a rifamycin S concentration of 0.13 µg/g were satisfactorily prepared. Nanovesicles with larger size and higher encapsulation efficiency (EE) were obtained when using glycerol and PEG400 in the aqueous media. Our results showed that niosomes consisting of an aqueous glycerol solution have higher stability and EE across a diversity of temperatures and pHs, and a lower MIC of rifamycin S against S. aureus.

9.
Membranes (Basel) ; 12(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35207037

RESUMO

Cheese whey, one of the most abundant by-products of the dairy industry, causes economic losses and pollution problems. In this study, deproteinised sweet whey was fermented by Pseudomonas taetrolens LMG 2336 to produce a prebiotic compound (lactobionic acid, LBA). Endotoxins produced by these microorganisms were successfully removed using microfiltration techniques, allowing the fermented whey permeate to be used in the food industry. The fermented whey permeate was used to develop prebiotic edible films by adding two different concentrations of gelatine (0.45 and 0.9 g gelatine g-1 LBA; LBA45 and LBA90). Furthermore, Lactobacillus plantarum CECT 9567 was added as a probiotic microorganism (LP45 and LP90), creating films containing both a prebiotic and a probiotic. The mechanical properties, water solubility, light transmittance, colour, and microstructure of the films were fully characterised. Additionally, the LBA and probiotic concentration in LP45 and LP90 were monitored under storage conditions. The strength and water solubility of the films were affected by the presence of LBA, and though all these films were homogeneous, they were slightly opaque. In LP45 and LP90, the presence of LBA as a prebiotic improved the viability of L. plantarum during cold storage, compared to the control. Therefore, these films could be used in the food industry to coat different foodstuffs to obtain functional products.

10.
J Sci Food Agric ; 102(9): 3495-3502, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35174887

RESUMO

Lactobionic acid (LBA) is a bioactive molecule that has generated keen interest in different industries. However, its future application in the food area is one of the most promising. Chemically, it is a polyhydroxy acid formed by the union of two molecules (galactose and gluconic acid) linked by an ether-bond, showing many interesting and unusual properties due to its structure and composition, although it is traditionally known in the food industry for its chelating, moisturizing, gelling, and antioxidant properties. There has been much research into the production of LBA, either by microbial fermentation or biocatalytic approaches such as enzymatic synthesis, but its use in foodstuffs, to produce new functional products and to evaluate its antimicrobial activity against food-borne pathogens, is a relatively new topic that has attracted the interest of the international research community recently. Furthermore, in spite of the potential of LBA, it has been approved only by the US Food and Drug Administration, and for its use as the salt form, but the publication of new comprehensive studies, able to agglutinate all the new food-related LBA research results, could disseminate knowledge about this compound and have an influence on its current regulation status. The aim of the present review is to describe the most recent advances and research on its antimicrobial potential, as well as summarizing the significant aspects that make LBA a promising bioactive compound for the food sector. © 2022 Society of Chemical Industry.


Assuntos
Anti-Infecciosos , Dissacarídeos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Dissacarídeos/farmacologia , Fermentação
11.
Food Chem ; 379: 132145, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35066356

RESUMO

The lipoproteins that remain after the extraction of phosvitin from the egg yolk granular fraction possess low industrial applicability. In this study, these lipoproteins were hydrolysed using trypsin, and the bioactivity of the resulting peptides was assessed by in silico analysis. In addition, in order to isolate the most valuable previously detected peptides, their transmission through a polyethersulfone (PES) membrane and a stabilised cellulose (SC) based membrane was also evaluated at several pHs. A pH of 4.0 gave the highest observed transmission of peptides through both membranes for every peptide identified in the permeate streams. Regarding the PES membrane, six peptide sequences detected in the permeate were predicted to be antihypertensive, although only one of them showed a bioactivity score higher than 0.5 according to Peptide Ranker. When the SC membrane was assessed, five peptides with a bioactivity score higher than 0.5 were detected in the permeate streams and eight peptides were predicted as antihypertensive. The in silico analysis performed showed that K.VQWGIIPSWIK.K was the most promising antihypertensive peptide found in the permeates.


Assuntos
Gema de Ovo , Ultrafiltração , Proteínas do Ovo , Peptídeos
12.
Membranes (Basel) ; 12(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35054557

RESUMO

Proteins, such as those in blood from slaughterhouses, are a good option for developing edible films. However, films made exclusively from proteins have low strength and high water solubility, which makes them difficult to use in the food industry. The use of cellulosic material, such as nanofibrillated cellulose (NFC), can improve the properties of these films. In the present work, bovine plasma was acidified and treated with ethanol to precipitate its proteins, and these proteins were used to prepare films reinforced with several concentrations of NFC. In addition, control films prepared with untreated bovine plasma and reinforced with NFC were prepared as well. These new edible films were characterized according to their mechanical properties, water vapor permeability, light transmittance, and microstructure. Furthermore, the film with the best properties was selected to be additivated with nisin to test its antimicrobial properties by wrapping meat previously contaminated with Staphylococcus aureus. In this sense, films prepared with the extracted proteins showed better properties than the films prepared with untreated plasma. In addition, the results showed that the reinforcement of the films with a 10% (w/w) of NFC decreased their water solubility and improved their puncture strength and water vapor barrier properties. Finally, the addition of nisin to the films prepared with extracted protein from bovine plasma and NFC gave them antimicrobial properties against S. aureus.

13.
Membranes (Basel) ; 12(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35054572

RESUMO

Polylactic acid (PLA) is known to be one of the most extensively used biodegradable thermoplastic polyesters, with the potential to replace conventional petroleum-based packaging materials; however, the low flexibility of films prepared using PLA has limited the applications of this biopolymer. In this study, in order to improve the mechanical properties of PLA films and to provide them with antioxidant properties, egg yolk oil was used as a biobased plasticizer. For this purpose, PLA films with increasing concentrations of egg yolk oil were prepared and the effects of this oil on the light transmission, transparency, colour, water vapour permeability, solubility, antioxidant activity and mechanical properties of the films were characterized. In addition, electron microscopy of the structure of the transverse section of the films was also performed. Results showed that the formulations with higher concentrations of egg yolk oil increased the films' elasticity, and their light barrier and antioxidant properties. Finally, in order to test the films as a packaging material for food applications, extra virgin olive oil and resveratrol, both photosensitive compounds, were packed and exposed to ambient light. Overall, the results show the potential of egg yolk oil as an environmentally friendly plasticizer that can improve the flexibility of PLA films and provide them with additional photoprotective properties.

14.
J Mech Behav Biomed Mater ; 89: 107-113, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30267992

RESUMO

Tissue engineering is one of the fields of clinical medicine that has forged ahead in recent years, especially because of its role as a potential alternative to organ transplantation. The main aim of this study has been the development of biocompatible materials to form extracellular matrix (ECM) structures in order to provide the necessary conditions for the settlement, proliferation and differentiation of dermal cells such as fibroblasts. To this end, human plasma gels were synthesized with the addition of increasing concentrations of transglutaminase (TGase), which catalyses the formation of covalent bonds between Lys and Glu residues. These materials were structurally characterized using rheology and texturometry and were found to have good structural resistance and elasticity for fibroblast culture. A remarkable improvement in the mechanical properties of the human plasma gels was detected when the two highest TGase concentrations were tested, which may be interpreted as an increase in the number of covalent and non-covalent bonds formed between the plasma protein chains. Furthermore, a human fibroblast primary culture was seeded on human plasma scaffolds and satisfactorily proliferated at 37 °C. This was verified in the images obtained by optical microscopy (OM) and by scanning electron microscopy (SEM), which confirmed that the structure of this type of material is suitable for the growth and proliferation of dermal fibroblasts.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Técnicas de Cultura de Células/métodos , Plasma/química , Plasma/metabolismo , Reologia , Engenharia Tecidual , Materiais Biocompatíveis/metabolismo , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Géis , Humanos , Transglutaminases/metabolismo
15.
J Sci Food Agric ; 98(5): 1765-1772, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28862333

RESUMO

BACKGROUND: Eggshell contains two layers formed by a dense network of fibrous proteins. These proteins are highly insoluble in a broad variety of solvents, but their composition makes them suitable for a broad range of applications. In this study, in order to extract and solubilise these proteins, the eggshell membranes were treated in an alkali solution. A Box-Behnken design was employed to determine the influence of the treatment variables on the amount of protein solubilised. Furthermore, the effect of ultrasound on the protein recovery yield was also evaluated and compared with the unmodified process. RESULTS: A solubilised protein yield close to 100% of the total eggshell membrane protein was obtained. The optimal conditions could be set at 70 °C in a 1.0 mol L-1 NaOH solution for 60 min. However, when ultrasound was applied, it was possible to decrease the time of reaction by half. In the two processes, the temperature was found to be the most important independent variable evaluated. Finally, the antioxidant properties of the proteins obtained in each case were similar. CONCLUSIONS: Ultrasound favours the detachment of big clumps of proteins from the eggshell membrane, facilitating the solubilisation of its compounds. The ultrasound had no effect on the protein properties tested in this study. © 2017 Society of Chemical Industry.


Assuntos
Antioxidantes/isolamento & purificação , Proteínas do Ovo/isolamento & purificação , Casca de Ovo/química , Casca de Ovo/efeitos da radiação , Ultrassom/métodos , Álcalis/química , Animais , Antioxidantes/química , Fracionamento Químico , Galinhas , Proteínas do Ovo/química
16.
J Food Sci Technol ; 54(12): 3969-3978, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29085139

RESUMO

Commercial extraction with organic solvents of valuable lipids from egg yolk produces a highly denatured protein waste that should be valorized. In this work, the delipidated protein waste remaining after ethanol extraction was used to prepare edible films. This material was also treated with transglutaminase, obtaining films that have also been characterized. When compared with gelatin and caseinate edible films, the films made with egg yolk delipidated protein showed poorer mechanical properties, but improved light barrier properties, low water solubility and a high degree of transparency. It is particularly interesting that the presence of phosvitin in the egg yolk gives the films important ferrous chelating properties. When the egg yolk delipidated protein was treated with transglutaminase, the strength of the film was improved in comparison with films made with untreated protein. Finally, addition of thymol and natamycin in the preparation of these films is shown to be an interesting alternative, providing them with antibacterial and antifungal capacities.

17.
Waste Manag ; 49: 364-371, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26831563

RESUMO

Food industry processing wastes are produced in enormous amounts every year, such wastes are usually disposed with the corresponding economical cost it implies, in the best scenario they can be used for pet food or composting. However new promising technologies and tools have been developed in the last years aimed at recovering valuable compounds from this type of materials. In particular, sub-critical water hydrolysis (SWH) has been revealed as an interesting way for recovering high added-value molecules, and its applications have been broadly referred in the bibliography. Special interest has been focused on recovering protein hydrolysates in form of peptides or amino acids, from both animal and vegetable wastes, by means of SWH. These recovered biomolecules have a capital importance in fields such as biotechnology research, nutraceuticals, and above all in food industry, where such products can be applied with very different objectives. Present work reviews the current state of art of using sub-critical water hydrolysis for protein recovering from food industry wastes. Key parameters as reaction time, temperature, amino acid degradation and kinetic constants have been discussed. Besides, the characteristics of the raw material and the type of products that can be obtained depending on the substrate have been reviewed. Finally, the application of these hydrolysates based on their functional properties and antioxidant activity is described.


Assuntos
Indústria de Processamento de Alimentos , Resíduos Industriais/análise , Gerenciamento de Resíduos/métodos , Aminoácidos/análise , Hidrólise , Peptídeos/análise , Hidrolisados de Proteína/análise
18.
J Agric Food Chem ; 62(32): 8179-86, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25033007

RESUMO

The use of enzymes to recover soluble peptides with functional properties from insoluble proteins could prove to be very expensive, implying high reaction times and low yields. In this study, the insoluble granular protein, previously delipidated, was hydrolyzed using enzymes (trypsin) as a comparison to the proposed alternative method: subcritical water hydrolysis (SWH) using both nitrogen and oxygen streams. The result of the hydrolysis was characterized in terms of the yield and peptide size distribution as well as different functional properties. The SWH of the delipidated granules resulted in a higher recovery yield than that obtained by enzymatic hydrolysis in half of the time. The foaming capacity of the peptides obtained by SWH was higher than that obtained by trypsin hydrolysis, although the foam stability was lower. Slight differences were detected between these peptides in terms of their emulsifying properties.


Assuntos
Proteínas Dietéticas do Ovo/química , Gema de Ovo/química , Emulsificantes/química , Nitrogênio/química , Oxigênio/química , Fragmentos de Peptídeos/química , Tripsina/metabolismo , Proteínas Dietéticas do Ovo/metabolismo , Emulsificantes/metabolismo , Aditivos Alimentares/química , Aditivos Alimentares/metabolismo , Hidrólise , Cinética , Peso Molecular , Oxirredução , Fragmentos de Peptídeos/metabolismo , Estabilidade Proteica , Proteólise , Solubilidade , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA