Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Behav ; 103(2): 188-96, 2011 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-21281655

RESUMO

Understanding autonomic nervous system functioning, which mediates behavioral and physiological responses to stress, offers great potential for assessing farm animal stress and welfare. Evaluation of heart rate variability (HRV) and blood pressure variability (BPV), using time and frequency domain analyses may provide a sensitive and reliable measure of affective states and stress-mediated changes in sympathetic and parasympathetic tones. The aim of this research was to define low (LF) and high frequency (HF) power spectral ranges using pharmacological autonomic blockade, and to examine HRV and BPV parameter changes in response to atropine and propranolol in swine. Ten, 13-week old, barrows (n=6) and gilts (n=4) underwent surgery to place an intra-cardiac electrode and a blood pressure catheter attached to a biotelemetric transmitter; pigs had a 3-week recovery period prior to data collection. Each pig was subjected to administration of 4 intravenous (i.v.) drug treatments: a control treatment, 3 mL of saline, and 3 blockade treatments; 0.1 mg/kg of atropine, 1.0 mg/kg of propranolol, and .1 mg/kg of atropine together with 1.0 mg/kg of propranolol. All treatments were delivered by injection in the jugular vein with a minimum of 48 h between individual treatments. Behavior, ECG and blood pressure data were recorded continuously for a total of 1h, from 30 min pre-injection to 30 min post-injection. For data analyses, two 512-beat intervals were selected for each treatment while the pig was lying and inactive. The first interval was selected from the pre-injection period (baseline), and the second was selected between 10 and 30 min post-injection. Time and frequency domain (power spectral density) analyses were performed on each data interval. Subsequent, LF and HF bands from the power spectral densities were defined based on general linear and regression analyses. The HRV and BPV were computed with a covariate (baseline) factorial analysis of treatment by sex interaction, and day of injection, with mixed models and Tukey's post-hoc tests. The best-fit range for LF was 0.0-0.09 Hz, and HF was 0.09-2.0 Hz (r²: 0.41 and 0.43, respectively). Propranolol and saline injections led to a greater overall total power and overall higher inter-beat interval, HF and LF power. Atropine led to a dominant sympathovagal balance of the cardiac activity in pigs. In addition, atropine led to an increase in LF power of both systolic and diastolic blood pressures in gilts suggesting vagal tone mediation of BPV. The understanding of autonomic regulation of HRV and BPV in domestic swine facilitates our ability to detect and quantify stress responses, and broadens its application in assessing farm animal welfare.


Assuntos
Atropina/farmacologia , Sistema Nervoso Autônomo/fisiologia , Pressão Sanguínea/fisiologia , Eletrocardiografia Ambulatorial/estatística & dados numéricos , Frequência Cardíaca/fisiologia , Propranolol/farmacologia , Animais , Sistema Nervoso Autônomo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Eletrocardiografia Ambulatorial/métodos , Frequência Cardíaca/efeitos dos fármacos , Suínos , Telemetria/métodos
2.
Physiol Behav ; 92(3): 293-316, 2007 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-17320122

RESUMO

Measurement of heart rate variability (HRV) is a non-invasive technique that can be used to investigate the functioning of the autonomic nervous system, especially the balance between sympathetic and vagal activity. It has been proven to be very useful in humans for both research and clinical studies concerned with cardiovascular diseases, diabetic autonomic dysfunction, hypertension and psychiatric and psychological disorders. Over the past decade, HRV has been used increasingly in animal research to analyse changes in sympathovagal balance related to diseases, psychological and environmental stressors or individual characteristics such as temperament and coping strategies. This paper discusses current and past HRV research in farm animals. First, it describes how cardiac activity is regulated and the relationships between HRV, sympathovagal balance and stress and animal welfare. Then it proceeds to outline the types of equipment and methodological approaches that have been adapted and developed to measure inter-beats intervals (IBI) and estimate HRV in farm animals. Finally, it discusses experiments and conclusions derived from the measurement of HRV in pigs, cattle, horses, sheep, goats and poultry. Emphasis has been placed on deriving recommendations for future research investigating HRV, including approaches for measuring and analysing IBI data. Data from earlier research demonstrate that HRV is a promising approach for evaluating stress and emotional states in animals. It has the potential to contribute much to our understanding and assessment of the underlying neurophysiological processes of stress responses and different welfare states in farm animals.


Assuntos
Bem-Estar do Animal , Animais Domésticos/fisiologia , Sistema Nervoso Autônomo/fisiopatologia , Frequência Cardíaca/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Estresse Psicológico/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA