Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Neurosci Lett ; 828: 137750, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548219

RESUMO

Azoles such as nafimidone, denzimol and loreclezole are known for their clinical efficacy against epilepsy, and loreclezole acts by potentiating γ-aminobutyric acid (GABA)-ergic currents. In the current study, we report a series of azole derivatives in alcohol ester and oxime ester structure showing promising anticonvulsant effects in 6 Hz and maximal electro shock (MES) models with minimal toxicity. The most promising of the series, 5f, was active in both 6 Hz and MES tests with a median effective dose (ED50) of 118.92 mg/kg in 6 Hz test and a median toxic dose (TD50) twice as high in mice. The compounds were predicted druglike and blood-brain barrier (BBB) penetrant in silico. Contrary to what was expected, the compounds showed no in vitro affinity to GABAA receptors (GABAARs) in radioligand binding assays; however, they were found structurally similar to peroxisome proliferator-activated receptors alpha (PPAR-α) agonists and predicted to show high affinity and agonist-like binding to PPAR-α in molecular docking studies. As a result, 5f emerged as a safe azole anticonvulsant with a wide therapeutic window and possible action through PPAR-α activation.


Assuntos
Anticonvulsivantes , Azóis , Camundongos , Animais , Anticonvulsivantes/farmacologia , Convulsões/tratamento farmacológico , Simulação de Acoplamento Molecular , PPAR alfa , Ácido gama-Aminobutírico , Ésteres , Relação Estrutura-Atividade
2.
ACS Appl Mater Interfaces ; 16(12): 14605-14625, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38488848

RESUMO

In the face of severe side effects of systemic chemotherapy used in cervical cancer, topical selective drug carriers with long-lasting effects are being sought. Hydrogels are suitable platforms, but their use is problematic in the case of delivery of hydrophobic drugs with anticancer activity. Herein, hydrogels constructed of unimolecular micelles displaying enhanced solubilization of aromatic lipophilic bioactive compounds are presented. Star-shaped poly(benzyl glycidyl ether)-block-poly(glycidyl glycerol ether) with an aryl-enriched core show high encapsulation capacity of poor water-soluble nifuratel and clotrimazole. Nifuratel attained selectivity against cervical cancer cells, whereas clotrimazole preserved its original selectivity. The combination of unimolecular micelles loaded with both drugs provided synergism; however, they were still selective against cervical cancer cells. The cross-linking of drug-loaded unimolecular micelles via dynamic boronic esters provided injectable and self-healable hydrogel drug carriers also displaying synergistic anticancer activity, suitable for intravaginal administration and assuring the effective coverage of the afflicted tissue area and efficient tissue permeability with hydrophobic bioactive compounds. Here, we show that the combination of star-shaped polyether amphiphiles and boronic ester cross-linking chemistry provides a new strategy for obtaining hydrogel platforms suitable for efficient hydrophobic drug delivery.


Assuntos
Nifuratel , Neoplasias do Colo do Útero , Feminino , Humanos , Micelas , Neoplasias do Colo do Útero/tratamento farmacológico , Hidrogéis/química , Clotrimazol , Portadores de Fármacos/química , Polietilenoglicóis/química
3.
Neurochem Res ; 49(5): 1200-1211, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38381245

RESUMO

Cognitive dysfunctions are now recognized as core symptoms of various psychiatric disorders e.g., major depressive disorder. Sustained immune activation may leads to cognitive dysfunctions. Proinflammatory cytokines shunt the metabolism of tryptophan towards kynurenine and quinolinic acid may accumulate at toxic concentrations. This acid triggers an increase in neuronal nitric oxide synthase function and promotes oxidative stress. The searching for small molecules that can regulate tryptophan metabolites produced in the kynurenic pathway has become an important goal in developing treatments for various central nervous system diseases with an inflammatory component. Previously we have identified a small hybrid molecule - MM165 which significantly reduces depressive-like symptoms caused by inflammation induced by lipopolysaccharide administration. In the present study, we investigated whether this compound would mitigate cognitive deficits induced by lipopolysaccharide administration and whether treatment with it would affect the plasma or brain levels of quinolinic acid and kynurenic acid. Neuroinflammation was induced in rats by administering lipopolysaccharide at a dose of 0.5 mg/kg body weight for 10 days. We conducted two tests: novel object recognition and object location, to assess the effect on memory impairment in animals previously treated with lipopolysaccharide. In plasma collected from rats, the concentrations of C-reactive protein and tumor necrosis factor alfa were determined. The concentrations of kynurenic acid and quinolinic acid were determined in plasma and homogenates obtained from the cerebral cortex of rats. Interleukin 6 in the cerebral cortex of rats was determined. Additionally, the body and spleen mass and spontaneous activity were measured in rats. Our study shows that MM165 may mitigate cognitive deficits induced by inflammation after administration of lipopolysaccharide and alter the concentrations of tryptophan metabolites in the brain. Compounds exhibiting a mechanism of action analogous to that of MM165 may serve as foundational structures for the development of a new class of antidepressants.


Assuntos
Transtorno Depressivo Maior , Cinurenina , Humanos , Ratos , Animais , Cinurenina/metabolismo , Triptofano/metabolismo , Lipopolissacarídeos/toxicidade , Ácido Cinurênico/metabolismo , Ácido Quinolínico/toxicidade , Ácido Quinolínico/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico
4.
Molecules ; 28(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38138475

RESUMO

This review presents an outline of the application of the most popular sorbent-based methods in food analysis. Solid-phase extraction (SPE) is discussed based on the analyses of lipids, mycotoxins, pesticide residues, processing contaminants and flavor compounds, whereas solid-phase microextraction (SPME) is discussed having volatile and flavor compounds but also processing contaminants in mind. Apart from these two most popular methods, other techniques, such as stir bar sorptive extraction (SBSE), molecularly imprinted polymers (MIPs), high-capacity sorbent extraction (HCSE), and needle-trap devices (NTD), are outlined. Additionally, novel forms of sorbent-based extraction methods such as thin-film solid-phase microextraction (TF-SPME) are presented. The utility and challenges related to these techniques are discussed in this review. Finally, the directions and need for future studies are addressed.


Assuntos
Análise de Alimentos , Resíduos de Praguicidas , Análise de Alimentos/métodos , Microextração em Fase Sólida/métodos , Extração em Fase Sólida , Polímeros Molecularmente Impressos
5.
Pharmacol Rep ; 75(5): 1211-1229, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37624466

RESUMO

BACKGROUND: α2-adrenoceptor ligands have been investigated as potential therapeutic agents for the treatment of obesity. Our previous studies have shown that guanabenz reduces the body weight of obese rats, presumably through its anorectic action. This demonstrates an additional beneficial effect on selected metabolic parameters, including glucose levels. The purpose of this present research was to determine the activity of guanabenz's metabolite-4-hydroxy guanabenz hydrochloride (4-OH-Guanabenz). METHODS: We performed in silico analyses, involving molecular docking to targets of specific interest as well as other potential biological targets. In vitro investigations were conducted to assess the selectivity profile of 4-OH-Guanabenz binding to α-adrenoceptors, along with intrinsic activity studies involving α2-adrenoceptors and trace amine-associated receptor 1 (TAAR1). Additionally, the effects of 4-OH-Guanabenz on the body weight of rats and selected metabolic parameters were evaluated using the diet-induced obesity model. Basic safety and pharmacokinetic parameters were also examined. RESULTS: 4-OH-guanabenz is a partial agonist of α2A-adrenoceptor. The calculated EC50 value for it is 316.3 nM. It shows weak agonistic activity at TAAR1 too. The EC50 value for 4-OH-Guanabenz calculated after computer simulation is 330.6 µM. Its primary mode of action is peripheral. The penetration of 4-OH-Guanabenz into the brain is fast (tmax = 15 min), however, with a low maximum concentration of 64.5 ng/g. 4-OH-Guanabenz administered ip at a dose of 5 mg/kg b.w. to rats fed a high-fat diet causes a significant decrease in body weight (approximately 14.8% compared to the baseline weight before treatment), reduces the number of calories consumed by rats, and decreases plasma glucose and triglyceride levels. CONCLUSIONS: The precise sequence of molecular events within the organism, linking the impact of 4-OH-Guanabenz on α2A-adrenoceptor and TAAR1 with weight reduction and the amelioration of metabolic disturbances, remains an unresolved matter necessitating further investigation. Undoubtedly, the fact that 4-OH-Guanabenz is a metabolite of a well-known drug has considerable importance, which is beneficial from an economic point of view and towards its further development as a drug candidate.

6.
RSC Adv ; 13(31): 21421-21431, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37465576

RESUMO

Cancer is a global health problem being the second worldwide cause of deaths right after cardiovascular diseases. The main methods of cancer treatment involve surgery, radiation and chemotherapy with an emphasis on the latter. Thus development of nanochemistry and nanomedicine in a search for more effective and safer cancer treatment is an important area of current research. Below, we present interaction of doxorubicin and acriflavine and the cytotoxicity of these drug nano-complexes towards cervical cancer (HeLa) cells. Experimental results obtained from NMR measurements and fluorescence spectroscopy show that the drugs' interaction was due to van der Waals forces, formation of hydrogen bonds and π-π stacking. Quantum molecular simulations confirmed the experimental results with regard to existing π-π stacking. Additionally it was shown that, at the level of theory applied (DFT, triple zeta basis set), the stacking interactions comprise the most preferable interactions (the lowest ΔG ca. -12 kcal mol-1) both between the molecules forming the acriflavine system and between the other component - another drug (doxorubicin) dimer. Biological tests performed on HeLa cells showed high cytotoxicity of the complexes, comparable to free drugs (ACF and DOX), both after 24 and 48 hours of incubation. For non-cancerous cells, a statistically significant difference in the cytotoxicity of drugs and complexes was observed in the case of a short incubation period. The results of the uptake study showed significantly more efficient cellular uptake of acriflavine than doxorubicin, whether administered alone or in combination with an anthracycline. The mechanism determining the selective uptake of acriflavine and ACF : DOX complexes towards non-cancer and cancer cells should be better understood in the future, as it may be of key importance in the design of complexes with toxic anti-cancer drugs.

7.
Int J Nanomedicine ; 18: 2109-2126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122501

RESUMO

Background: Mesalazine is one of the main drugs used to treat inflammatory bowel diseases. However, its applicability is limited by its rapid inactivation and removal from the organism, as well as the need for its membrane transporter-dependent cellular uptake to exert therapeutic effect. The present study involved the development of an innovative nanocarrier, based on poly(amidoamine) (PAMAM) dendrimer of the 4th generation, to obtain higher concentrations of the drug in the intestinal epithelial cells, thus increasing its anti-inflammatory potential. The work involved synthesis and in vitro characterization of covalent PAMAM-mesalazine conjugate with succinic linker. Results: PAMAM-mesalazine conjugate was synthesized and characterized by 1H NMR, 13C NMR, FTIR and MALDI-TOF MS. This allowed to confirm the purity of the obtained compound and intermediates. Based on the analyses, it was found that ~45 drug molecules were successfully attached to one molecule of PAMAM dendrimer. The conjugate was then characterized in terms of hydrodynamic diameter, zeta potential, spectral properties, drug release from the carrier, as well as cellular uptake and cytotoxicity in two in vitro models of gastrointestinal epithelium (CaCo-2 and HT-29 human cell lines). Analyzing cellular parameters related to the specific mechanism of action of mesalazine (inhibition of NF-κB signaling, decrease in interleukin and prostaglandin synthesis, and ROS scavenging), we showed that such a dendrimer-based carrier may enhance cellular uptake of the drug, which translated into its improved anti-inflammatory efficacy. Conclusion: The use of PAMAM macromolecule as a carrier for mesalazine increases the bioavailability of the drug, ensuring enhanced cellular uptake and bypassing the need to utilize mesalazine-specific membrane transporters. All these characteristics translate into an improved anti-inflammatory activity of mesalazine in vitro. In conjunction with appropriately designed in vivo studies, such a compound may prove to be a promising alternative to the therapeutics currently used in inflammatory bowel diseases.


Assuntos
Dendrímeros , Nanopartículas , Humanos , Dendrímeros/farmacologia , Mesalamina/farmacologia , Células CACO-2 , Proteínas de Membrana Transportadoras , Anti-Inflamatórios/farmacologia , Excipientes
8.
Br J Clin Pharmacol ; 89(10): 2977-2991, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37218088

RESUMO

AIMS: Clinically significant interactions with food occur for more than half of antiretroviral drugs. Different physiochemical properties deriving from the chemical structures of antiretroviral drugs may contribute to the variable food effect. Chemometric methods allow analysing a large number of interrelated variables concomitantly and visualizing correlations between them. We used a chemometric approach to determine the types of correlations among different features of antiretroviral drugs and food that may influence interactions. METHODS: Thirty-three antiretroviral drugs were analysed: ten nucleoside reverse transcriptase inhibitors, six non-nucleoside reverse transcriptase inhibitors, five integrase strand transfer inhibitors, ten protease inhibitors, one fusion inhibitor and one HIV maturation inhibitor. Input data for the analysis were collected from already published clinical studies, chemical records and calculations. We constructed a hierarchical partial least squares (PLS) model with three response parameters: postprandial change of time to reach maximum drug concentration (ΔTmax ), albumin binding (%) and logarithm of partition coefficient (logP). Predictor parameters were the first two principal components of principal component analysis (PCA) models for six groups of molecular descriptors. RESULTS: PCA models explained 64.4% to 83.4% of the variance of the original parameters (average: 76.9%), whereas the PLS model had four significant components and explained 86.2% and 71.4% of the variance in the sets of predictor and response parameters, respectively. We observed 58 significant correlations between ΔTmax , albumin binding (%), logP and constitutional, topological, hydrogen bonding and charge-based molecular descriptors. CONCLUSIONS: Chemometrics is a useful and valuable tool for analysing interactions between antiretroviral drugs and food.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Inibidores da Protease de HIV , Humanos , Inibidores da Transcriptase Reversa , Inibidores da Protease de HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Quimiometria , Fármacos Anti-HIV/uso terapêutico , Antirretrovirais/uso terapêutico
9.
ACS Chem Neurosci ; 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37014731

RESUMO

While monoaminergic deficits are evident in all depressed patients, nonresponders are characterized by impaired GABA-ergic signaling and the simultaneous presence of the inflammatory component. Pharmacological agents able to curb pathological immune responses and modulate ineffective GABA-ergic neurotransmission are thought to improve therapeutic outcomes in the treatment-resistant subgroup of depressed patients. Here, we report on a set of dually acting molecules designed to simultaneously modulate GABA-A and 5-HT6 receptor activity. The serotonin 5-HT6 receptor was chosen as a complementary molecular target, due to its promising antidepressant-like activities reported in animal studies. Within the study we identified that lead molecule 16 showed a desirable receptor profile and physicochemical properties. In pharmacological studies, 16 was able to reduce the secretion of proinflammatory cytokines and decrease oxidative stress markers. In animal studies, 16 exerted antidepressant-like activity deriving from a synergic interplay between 5-HT6 and GABA-A receptors. Altogether, the presented findings point to hybrid 16 as an interesting tool that interacts with pharmacologically relevant targets, matching the pathological dysfunction of depression associated with neuroinflammation.

10.
J Mater Chem B ; 11(24): 5552-5564, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-36877094

RESUMO

Clotrimazole, a hydrophobic drug routinely used in the treatment of vaginal candidiasis, also shows antitumor activity. However, its use in chemotherapy has been unsuccessful to date due to its low solubility in aqueous media. In this work, new unimolecular micelles based on polyether star-hyperbranched carriers of clotrimazole are presented that can enhance solubility, and consequently the bioavailability, of clotrimazole in water. The amphiphilic constructs consisting of a hydrophobic poly(n-alkyl epoxide) core and hydrophilic corona of hyperbranched polyglycidol were synthesized in a three-step anionic ring-opening polymerization of epoxy monomers. The synthesis of such copolymers, however, was only possible by incorporating a linker to facilitate the elongation of the hydrophobic core with glycidol. Unimolecular micelles-clotrimazole formulations displayed significantly increased activity against human cervical cancer HeLa cells compared to the free drug, along with a weak effect on the viability of the normal dermal microvascular endothelium cells HMEC1. This selective activity of clotrimazole on cancer cells with little effect on normal cells was a result of the fact that clotrimazole targets the Warburg effect in cancer cells. Flow cytometric analysis revealed that the encapsulated clotrimazole significantly blocks the progression of the HeLa cycle in the G0/G1 phase and induces apoptosis. In addition, the ability of the synthesized amphiphilic constructs to form a dynamic hydrogel was demonstrated. Such a gel facilitates the delivery of drug-loaded single-molecule micelles to the affected area, where they can form a continuous, self-healing layer.


Assuntos
Clotrimazol , Micelas , Humanos , Clotrimazol/farmacologia , Células HeLa , Polímeros/química
11.
Molecules ; 28(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36903308

RESUMO

Due to problems with selenium deficiency in humans, the search for new organic molecules containing this element in plant biofortification process is highly required. Selenium organic esters evaluated in this study (E-NS-4, E-NS-17, E-NS-71, EDA-11, and EDA-117) are based mostly on benzoselenoate scaffolds, with some additional halogen atoms and various functional groups in the aliphatic side chain of different length, while one compound contains a phenylpiperazine moiety (WA-4b). In our previous study, the biofortification of kale sprouts with organoselenium compounds (at the concentrations of 15 mg/L in the culture fluid) strongly enhanced the synthesis of glucosinolates and isothiocyanates. Thus, the study aimed to discover the relationships between molecular characteristics of the organoselenium compounds used and the amount of sulfur phytochemicals in kale sprouts. The statistical partial least square model with eigenvalues equaled 3.98 and 1.03 for the first and second latent components, respectively, which explained 83.5% of variance in the predictive parameters, and 78.6% of response parameter variance was applied to reveal the existence of the correlation structure between molecular descriptors of selenium compounds as predictive parameters and biochemical features of studied sprouts as response parameters (correlation coefficients for parameters in PLS model in the range-0.521 ÷ 1.000). This study supported the conclusion that future biofortifiers composed of organic compounds should simultaneously contain nitryl groups, which may facilitate the production of plant-based sulfur compounds, as well as organoselenium moieties, which may influence the production of low molecular weight selenium metabolites. In the case of the new chemical compounds, environmental aspects should also be evaluated.


Assuntos
Brassica , Compostos Organosselênicos , Compostos de Selênio , Selênio , Humanos , Selênio/metabolismo , Brassica/química , Compostos de Enxofre/metabolismo
12.
Biomolecules ; 13(2)2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36830567

RESUMO

Treatment of tremors, such as in essential tremor (ET) and Parkinson's disease (PD) is mostly ineffective. Exact tremor pathomechanisms are unknown and relevant animal models are missing. GABA-A receptor is a target for tremorolytic medications, but current non-selective drugs produce side effects and have safety liabilities. The aim of this study was a search for GABA-A subunit-specific tremorolytics using different tremor-generating mechanisms. Two selective positive allosteric modulators (PAMs) were tested. Zolpidem, targeting GABA-A α1, was not effective in models of harmaline-induced ET, pimozide- or tetrabenazine-induced tremulous jaw movements (TJMs), while the novel GABA-A α2/3 selective MP-III-024 significantly reduced both the harmaline-induced ET tremor and pimozide-induced TJMs. While zolpidem decreased the locomotor activity of the rats, MP-III-024 produced small increases. These results provide important new clues into tremor suppression mechanisms initiated by the enhancement of GABA-driven inhibition in pathways controlled by α2/3 but not α1 containing GABA-A receptors. Tremor suppression by MP-III-024 provides a compelling reason to consider selective PAMs targeting α2/3-containing GABA-A receptors as novel therapeutic drug targets for ET and PD-associated tremor. The possibility of the improved tolerability and safety of this mechanism over non-selective GABA potentiation provides an additional rationale to further pursue the selective α2/3 hypothesis.


Assuntos
Tremor Essencial , Tremor , Ratos , Animais , Tremor/induzido quimicamente , Tremor/tratamento farmacológico , Pimozida/efeitos adversos , Zolpidem/efeitos adversos , Harmalina/efeitos adversos , Receptores de GABA-A/metabolismo , Ratos Sprague-Dawley , Ligantes , Tremor Essencial/metabolismo , Ácido gama-Aminobutírico
13.
ACS Chem Neurosci ; 14(6): 1166-1180, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36848624

RESUMO

Modulation of α1ß2γ2GABA-A receptor subpopulation expressed in the basal ganglia region is a conceptually novel mode of pharmacological strategy that offers prospects to tackle a variety of neurological dysfunction. Although clinical findings provided compelling evidence for the validity of this strategy, the current chemical space of molecules able to modulate the α1/γ2 interface of the GABA-A receptor is limited to imidazo[1,2-a]pyridine derivatives that undergo rapid biotransformation. In response to a deficiency in the chemical repertoire of GABA-A receptors, we identified a series of 2-(4-fluorophenyl)-1H-benzo[d]imidazoles as positive allosteric modulators (PAMs) with improved metabolic stability and reduced potential for hepatotoxicity, where lead molecules 9 and 23 displayed interesting features in a preliminary investigation. We further disclose that the identified scaffold shows a preference for interaction with the α1/γ2 interface of the GABA-A receptor, delivering several PAMs of the GABA-A receptor. The present work provides useful chemical templates to further explore the therapeutic potential of GABA-A receptor ligands and enriches the chemical space of molecules suitable for the interaction with the α1/γ2 interface.


Assuntos
Imidazóis , Receptores de GABA-A , Receptores de GABA-A/metabolismo , Imidazóis/farmacologia , Ligantes , Regulação Alostérica
14.
Eur J Med Chem ; 247: 115071, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36603509

RESUMO

There is clear evidence that the presence of inflammatory factors and impaired GABA-ergic neurotransmission in depressed patients is associated with poor clinical outcome. We designed hybrid molecules, bearing the GABA molecule assembled with chemical fragments that interact with the serotonin 5-HT6 receptor. Such a combination aimed to curb neuroinflammation, remodel GABA-ergic signaling, and provide antidepressant-like activity. The most promising hybrid 3B exerted nanomolar affinity for 5-HT6 receptors and exerted agonistic properties on GABA-A receptors. Developability studies conferred that 3B exerted favorable drug-like properties and optimal brain penetration. In in vivo studies, 3B exerted robust antidepressant-like activity and proved to be highly effective in reducing levels of oxidative stress markers and the pro-inflammatory cytokine IL-6. The inetersting pharmacological profile of 3B makes it a promising candidate for further development for depression associated with neuroinflammation.


Assuntos
Depressão , Serotonina , Humanos , Depressão/tratamento farmacológico , Doenças Neuroinflamatórias , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Ácido gama-Aminobutírico
15.
AIDS Behav ; 27(5): 1441-1468, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36318429

RESUMO

Multiple factors may affect combined antiretroviral therapy (cART). We investigated the impact of food, beverages, dietary supplements, and alcohol on the pharmacokinetic and pharmacodynamic parameters of 33 antiretroviral drugs. Systematic review in adherence to PRISMA guidelines was performed, with 109 reports of 120 studies included. For each drug, meta-analyses or qualitative analyses were conducted. We have found clinically significant interactions with food for more than half of antiretroviral agents. The following drugs should be taken with or immediately after the meal: tenofovir disoproxil, etravirine, rilpivirine, dolutegravir, elvitegravir, atazanavir, darunavir, lopinavir, nelfinavir, ritonavir, saquinavir. Didanosine, zalcitabine, zidovudine, efavirenz, amprenavir, fosamprenavir, and indinavir should be taken on an empty stomach for maximum patient benefit. Antiretroviral agents not mentioned above can be administered regardless of food. There is insufficient evidence available to make recommendations about consuming juice or alcohol with antiretroviral drugs. Resolving drug-food interactions may contribute to maximized cART effectiveness and safety.


RESUMEN: Múltiples factores pueden afectar la terapia antirretroviral combinada (cART). Investigamos el impacto de los alimentos, las bebidas, los suplementos dietéticos y el alcohol en los parámetros farmacocinéticos y farmacodinámicos de 33 medicamentos antirretrovirales. Se realizó la revisión sistemática en apego a las guías PRISMA, con 109 reportes de 120 estudios incluidos. Para cada fármaco se realizaron metanálisis o análisis cualitativos. Hemos encontrado interacciones clínicamente significativas con alimentos para más de la mitad de los fármacos antirretrovirales. Los siguientes medicamentos deben tomarse durante o inmediatamente después de comer: tenofovir, disoproxil, etravirina, rilpivirine, dolutegravir, elvitegravir, atazanavir, darunavir, lopinavir, nelfinavir, ritonavir, saquinavir. Didanosina, zalcitabina, zidovudina, efavirenz, amprenavir, fosamprenavir e indinavir deben tomarse con el estómago vacío para obtener el máximo beneficio para el paciente. Los fármacos antirretrovirales no mencionados anteriormente se pueden administrar independientemente de los alimentos. No hay suficiente evidencia disponible para hacer recomendaciones sobre el consumo de jugo o alcohol con medicamentos antirretrovirales. Resolver las interacciones entre medicamentos y alimentos puede contribuir a maximizar la eficacia y la seguridad de cART.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Humanos , Infecções por HIV/tratamento farmacológico , Ritonavir/farmacologia , Ritonavir/uso terapêutico , Etanol , Antirretrovirais/uso terapêutico , Bebidas , Suplementos Nutricionais , Fármacos Anti-HIV/uso terapêutico
16.
Biomacromolecules ; 23(10): 4203-4219, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36073031

RESUMO

Injectable, self-healing hydrogels with enhanced solubilization of hydrophobic drugs are urgently needed for antimicrobial intravaginal therapies. Here, we report the first hydrogel systems constructed of dynamic boronic esters cross-linking unimolecular micelles, which are a reservoir of antifungal hydrophobic drug molecules. The selective hydrophobization of hyperbranched polyglycidol with phenyl units in the core via ester or urethane bonds enabled the solubilization of clotrimazole, a water-insoluble drug of broad antifungal properties. The encapsulation efficiency of clotrimazole increases with the degree of the HbPGL core modification; however, the encapsulation is more favorable in the case of urethane derivatives. In addition, the rate of clotrimazole release was lower from HbPGL hydrophobized via urethane bonds than with ester linkages. In this work, we also revealed that the hydrophobization degree of HbPGL significantly influences the rheological properties of its hydrogels with poly(acrylamide-ran-2-acrylamidephenylboronic acid). The elastic strength of networks (GN) and the thermal stability of hydrogels increased along with the degree of HbPGL core hydrophobization. The degradation of the hydrogel constructed of the neat HbPGL was observed at approx. 40 °C, whereas the hydrogels constructed on HbPGL, where the monohydroxyl units were modified above 30 mol %, were stable above 50 °C. Moreover, the flow and self-healing ability of hydrogels were gradually decreased due to the reduced dynamics of macromolecules in the network as an effect of increased hydrophobicity. The changes in the rheological properties of hydrogels resulted from the engagement of phenyl units into the intermolecular hydrophobic interactions, which besides boronic esters constituted additional cross-links. This study demonstrates that the HbPGL core hydrophobized with phenyl units at 30 mol % degrees via urethane linkages is optimal in respect of the drug encapsulation efficiency and rheological properties including both self-healable and injectable behavior. This work is important because of a proper selection of a building component for the construction of a therapeutic hydrogel platform dedicated to the intravaginal delivery of hydrophobic drugs.


Assuntos
Ginecologia , Hidrogéis , Acrilamidas , Antifúngicos/farmacologia , Clotrimazol/farmacologia , Ésteres/química , Hidrogéis/química , Micelas , Uretana , Água
17.
Molecules ; 27(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36144849

RESUMO

At the base of the food pyramid is vegetables, which should be consumed most often of all food products, especially in raw and unprocessed form. Vegetables and mushrooms are rich sources of bioactive compounds that can fulfill various functions in plants, starting from protection against herbivores and being natural insecticides to pro-health functions in human nutrition. Many of these compounds contain sulfur in their structure. From the point of view of food producers, it is extremely important to know that some of them have flavor properties. Volatile sulfur compounds are often potent odorants, and in many vegetables, belonging mainly to Brassicaeae and Allium (Amaryllidaceae), sulfur compounds determine their specific flavor. Interestingly, some of the pathways that form volatile sulfur compounds in vegetables are also found in selected edible mushrooms. The most important odor-active organosulfur compounds can be divided into isothiocyanates, nitriles, epithionitriles, thiols, sulfides, and polysulfides, as well as others, such as sulfur containing carbonyl compounds and esters, R-L-cysteine sulfoxides, and finally heterocyclic sulfur compounds found in shiitake mushrooms or truffles. This review paper summarizes their precursors and biosynthesis, as well as their sensory properties and changes in selected technological processes.


Assuntos
Agaricales , Inseticidas , Cisteína , Ésteres , Humanos , Isotiocianatos/análise , Nitrilas/análise , Odorantes , Compostos de Sulfidrila , Sulfetos , Sulfóxidos , Enxofre , Compostos de Enxofre/química , Verduras/química
18.
Drug Dev Res ; 83(1): 184-193, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34291476

RESUMO

Nafimidone is known for its clinical antiepileptic effects and alcohol derivatives of nafimidone were reported be potent anticonvulsants. These compounds are structurally similar to miconazole, which is known to inhibit cholinesterases, protect neurons, and ameliorate cognitive decline. Herein, we aimed to reveal the potential of three nafimidone alcohol esters (5 g, 5i, and 5 k), which were previously reported for their anticonvulsant effects, against co-morbidities of epilepsy such as inflammatory and neuropathic pain, cognitive and behavioral deficits, and neuron death, and understand their roles in related pathways such as γ-butyric acid type A (GABAA ) receptor and cholinesterases using in vitro, in vivo and in silico methods. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was used for cytotoxicity evaluation, hippocampal slice culture assay for neuroprotection, formalin test for acute and inflammatory pain, sciatic ligation for neuropathic pain, Morris water maze and open field locomotor tasks for cognitive and behavioral deficits, radioligand binding for GABAA receptor affinity, spectrophotometric methods for cholinesterase inhibition in vitro, and molecular docking in silico. The compounds were non-toxic to fibroblast cells. 5 k was neuroprotective against kainic acid-induced neuron death. 5i reduced pain response of mice in both the acute and the inflammatory phases. 5i improved survival upon status epilepticus. The compounds showed no affinity to GABAA receptor but inhibited acetylcholinesterase, 5 k also inhibited butyrylcholinesterase. The compounds were predicted to interact mainly with the peripheric anionic site of cholinesterase enzymes. The title compounds showed neuroprotective, analgesic, and cholinesterase inhibitory effects, thus they bear promise against certain co-morbidities of epilepsy with neurological insults.


Assuntos
Butirilcolinesterase , Epilepsia , Acetilcolinesterase/metabolismo , Animais , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Epilepsia/tratamento farmacológico , Camundongos , Simulação de Acoplamento Molecular , Morbidade , Nafazolina/análogos & derivados
19.
Biomed Pharmacother ; 145: 112424, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34785417

RESUMO

Small drug-like molecules that can block the function of serotonin 5-HT2A receptors have garnered considerable attention due to their ability to inhibit platelet aggregation and the possible prevention of atherosclerotic lesions. Although clinical data provided compelling evidence for the efficacy of this approach in the prevention of various cardiovascular conditions, the chemical space of 5-HT2A receptor antagonists is limited to ketanserin and sarpogrelate. To expand the portfolio of novel chemical motifs with potential antiplatelet activity, we evaluated the antiplatelet activity of a series of 6-fluorobenzo[d]isoxazole derivatives that possess a high affinity for 5-HT2A receptor. Here we describe in vitro studies showing that 6-fluorobenzo[d]isoxazole derivatives exert promising antiplatelet activity in three various in vitro models of platelet aggregation, as well as limit serotonin-induced vasoconstriction. Compound AZ928 showed in vitro activity greater than the clinically approved drug sarpogrelate. In addition to promising antiplatelet activity, the novel series was characterized by a favorable safety profile. Our findings show that the novel series exerts promising antiplatelet efficacy while being deprived of potential side effects, such as hemolytic activity, which render these compounds as potential substances for further investigation in the field of cardiovascular research.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Isoxazóis/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Animais , Humanos , Isoxazóis/química , Isoxazóis/toxicidade , Masculino , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/toxicidade , Ratos , Ratos Wistar , Antagonistas do Receptor 5-HT2 de Serotonina/química , Antagonistas do Receptor 5-HT2 de Serotonina/toxicidade , Relação Estrutura-Atividade , Succinatos/farmacologia , Vasoconstrição/efeitos dos fármacos
20.
J Agric Food Chem ; 69(41): 12270-12277, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34609877

RESUMO

Volatile compounds of raw and cooked green kohlrabi were investigated using a sensomics approach. A total of 55 odor-active compounds were detected and identified in raw and cooked green kohlrabi using GC-O. Twenty-eight odor-active compounds with high flavor dilution (FD) factors ranging from 64 to 1024 were quantitated, and odor activity values (OAVs) were determined. Eight compounds showed high OAVs in raw and cooked kohlrabi: five sulfur compounds (dimethyl trisulfide, methyl 2-methyl-3-furyl disulfide, and three isothiocyanates (1-isothiocyanato-3-(methylsulfanyl)propane, benzyl isothiocyanate, and 1-isothiocyanato-4-(methylsulfanyl)butane)), two lipid oxidation products (1-octen-3-one and trans-4,5-epoxy-(2E)-dec-2-enal), and 2-isopropyl-3-methoxypyrazine. Among these, the sulfur compounds contributed most to the overall smell of the raw and cooked vegetables. The quantitation analysis indicates that the eight odorants are the backbone compounds for raw and cooked kohlrabi. The OAVs for the backbone compounds and also for minor odorants are clearly higher in raw kohlrabi than in the cooked one. Differences can be explained by the influence of the cooking process.


Assuntos
Brassica , Compostos Orgânicos Voláteis , Culinária , Aromatizantes , Cromatografia Gasosa-Espectrometria de Massas , Odorantes/análise , Olfato , Compostos Orgânicos Voláteis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA