Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Tissue Cell ; 88: 102396, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38703582

RESUMO

By using a unique animal model of type 2 diabetes mellitus, Psammomys obesus induced by a high-calorie diet (HCD) for nine months, we showed for the first time, in the liver, the impact of inflammation on the remodeling of intercellular junction molecules E-cadherins during the progression of steatohepatitis. Under the effect of HCD, the expressions of immunohistochemical markers, Tumor Necrosis Factor alpha (TNFα) and E-cadherins were inversely correlated. Ultrastructural examination revealed the involvement of destabilization and loss of E-cadherins in the process of hepatic pathogenesis. This mechanical maintenance stress was favored by the recruitment of immune cells which contributed to the triggering and progression of fibrosis by the enlargement of the intercellular space and the invasion of collagen fibers. Furthermore to escape cell death, loss of E-cadherins played a major role in mediating fibrosis. Psammomys obesus is a promising model for experimental research, enabling the extrapolation of observed structural and functional alterations in humans, the objective to find new therapeutic targets. The physiological resemblance between Psammomys obesus and humans enhances the precision and relevance of biomedical research efforts.

2.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38538092

RESUMO

HuR (ElavL1) is one of the main post-transcriptional regulators that determines cell fate. Although the role of HuR in apoptosis is well established, the post-translational modifications that govern this function remain elusive. In this study, we show that PARP1/2-mediated poly(ADP)-ribosylation (PARylation) is instrumental in the pro-apoptotic function of HuR. During apoptosis, a substantial reduction in HuR PARylation is observed. This results in the cytoplasmic accumulation and the cleavage of HuR, both of which are essential events for apoptosis. These effects are mediated by a pADP-ribose-binding motif within the HuR-HNS region (HuR PAR-binding site). Under normal conditions, the association of the HuR PAR-binding site with pADP-ribose is responsible for the nuclear retention of HuR. Mutations within this motif prevent the binding of HuR to its import factor TRN2, leading to its cytoplasmic accumulation and cleavage. Collectively, our findings underscore the role of PARylation in controlling the pro-apoptotic function of HuR, offering insight into the mechanism by which PARP1/2 enzymes regulate cell fate and adaptation to various assaults.


Assuntos
Processamento de Proteína Pós-Traducional , Ribose , Mutação , Diferenciação Celular , Domínios Proteicos
3.
Nucleic Acids Res ; 52(7): 4002-4020, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38321934

RESUMO

Poly(ADP-ribosylation) (PARylation) is a post-translational modification mediated by a subset of ADP-ribosyl transferases (ARTs). Although PARylation-inhibition based therapies are considered as an avenue to combat debilitating diseases such as cancer and myopathies, the role of this modification in physiological processes such as cell differentiation remains unclear. Here, we show that Tankyrase1 (TNKS1), a PARylating ART, plays a major role in myogenesis, a vital process known to drive muscle fiber formation and regeneration. Although all bona fide PARPs are expressed in muscle cells, experiments using siRNA-mediated knockdown or pharmacological inhibition show that TNKS1 is the enzyme responsible of catalyzing PARylation during myogenesis. Via this activity, TNKS1 controls the turnover of mRNAs encoding myogenic regulatory factors such as nucleophosmin (NPM) and myogenin. TNKS1 mediates these effects by targeting RNA-binding proteins such as Human Antigen R (HuR). HuR harbors a conserved TNKS-binding motif (TBM), the mutation of which not only prevents the association of HuR with TNKS1 and its PARylation, but also precludes HuR from regulating the turnover of NPM and myogenin mRNAs as well as from promoting myogenesis. Therefore, our data uncover a new role for TNKS1 as a key modulator of RBP-mediated post-transcriptional events required for vital processes such as myogenesis.


Assuntos
Desenvolvimento Muscular , Fibras Musculares Esqueléticas , Miogenina , RNA Mensageiro , Tanquirases , Tanquirases/metabolismo , Tanquirases/genética , Humanos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Desenvolvimento Muscular/genética , Animais , Fibras Musculares Esqueléticas/metabolismo , Camundongos , Miogenina/genética , Miogenina/metabolismo , Nucleofosmina , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Estabilidade de RNA/genética , Poli ADP Ribosilação/genética , Linhagem Celular , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Diferenciação Celular/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Células HEK293
4.
Mol Microbiol ; 121(4): 659-670, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38140856

RESUMO

Since its inception in the 1930s, transmission electron microscopy (TEM) has been a powerful method to explore the cellular structure of parasites. TEM usually requires samples of <100 nm thick and with protozoans being larger than 1 µm, their study requires resin embedding and ultrathin sectioning. During the past decade, several new methods have been developed to improve, facilitate, and speed up the structural characterisation of biological samples, offering new imaging modalities for the study of protozoans. In particular, scanning transmission electron microscopy (STEM) can be used to observe sample sections as thick as 1 µm thus becoming an alternative to conventional TEM. STEM can also be performed under cryogenic conditions in combination with cryo-electron tomography providing access to the study of thicker samples in their native hydrated states in 3D. This method, called cryo-scanning transmission electron tomography (cryo-STET), was first developed in 2014. This review presents the basic concepts and benefits of STEM methods and provides examples to illustrate the potential for new insights into the structure and ultrastructure of protozoans.


Assuntos
Tomografia com Microscopia Eletrônica , Microscopia Eletrônica de Transmissão e Varredura/métodos , Tomografia com Microscopia Eletrônica/métodos , Microscopia Crioeletrônica/métodos , Microscopia Eletrônica de Varredura
5.
Bioinform Adv ; 3(1): vbad119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745005

RESUMO

Motivation: FIB-SEM (Focused Ion Beam-Scanning Electron Microscopy) is a technique to generate 3D images of samples up to several microns in depth. The principle is based on the alternate use of SEM to image the surface of the sample (a few nanometers thickness) and of FIB to mill the surface of the sample a few nanometers at the time. In this way, huge stacks of images can thus be acquired.Although this technique has proven useful in imaging biological systems, the presence of some visual artifacts (stripes due to sample milling, detector saturation, charge effects, focus or sample drift, etc.) still raises some challenges for image interpretation and analyses. Results: With the aim of meeting these challenges, we developed a freeware (SEM3De) that either corrects artifacts with state-of-the-art approaches or, when artifacts are impossible to correct, enables the replacement of artifactual slices by an in-painted image created from adjacent non-artifactual slices. Thus, SEM3De improves the overall usability of FIB-SEM acquisitions. Availability and implementation: SEM3De can be downloaded from https://sourceforge.net/projects/sem3de/ as a plugin for ImageJ.

6.
Front Microbiol ; 14: 1065609, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37350788

RESUMO

The development of virus-like particle (VLP) based vaccines for human papillomavirus, hepatitis B and hepatitis E viruses represented a breakthrough in vaccine development. However, for dengue and COVID-19, technical complications, such as an incomplete understanding of the requirements for protective immunity, but also limitations in processes to manufacture VLP vaccines for enveloped viruses to large scale, have hampered VLP vaccine development. Selecting the right adjuvant is also an important consideration to ensure that a VLP vaccine induces protective antibody and T cell responses. For diseases like COVID-19 and dengue fever caused by RNA viruses that exist as families of viral variants with the potential to escape vaccine-induced immunity, the development of more efficacious vaccines is also necessary. Here, we describe the development and characterisation of novel VLP vaccine candidates using SARS-CoV-2 and dengue virus (DENV), containing the major viral structural proteins, as protypes for a novel approach to produce VLP vaccines. The VLPs were characterised by Western immunoblot, enzyme immunoassay, electron and atomic force microscopy, and in vitro and in vivo immunogenicity studies. Microscopy techniques showed proteins self-assemble to form VLPs authentic to native viruses. The inclusion of the glycolipid adjuvant, α-galactosylceramide (α-GalCer) in the vaccine formulation led to high levels of natural killer T (NKT) cell stimulation in vitro, and strong antibody and memory CD8+ T cell responses in vivo, demonstrated with SARS-CoV-2, hepatitis C virus (HCV) and DEN VLPs. This study shows our unique vaccine formulation presents a promising, and much needed, new vaccine platform in the fight against infections caused by enveloped RNA viruses.

7.
Nucleic Acids Res ; 51(3): 1375-1392, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36629268

RESUMO

mRNA stability is the mechanism by which cells protect transcripts allowing their expression to execute various functions that affect cell metabolism and fate. It is well-established that RNA binding proteins (RBPs) such as HuR use their ability to stabilize mRNA targets to modulate vital processes such as muscle fiber formation (myogenesis). However, the machinery and the mechanisms regulating mRNA stabilization are still elusive. Here, we identified Y-Box binding protein 1 (YB1) as an indispensable HuR binding partner for mRNA stabilization and promotion of myogenesis. Both HuR and YB1 bind to 409 common mRNA targets, 147 of which contain a U-rich consensus motif in their 3' untranslated region (3'UTR) that can also be found in mRNA targets in other cell systems. YB1 and HuR form a heterodimer that associates with the U-rich consensus motif to stabilize key promyogenic mRNAs. The formation of this complex involves a small domain in HuR (227-234) that if mutated prevents HuR from reestablishing myogenesis in siHuR-treated muscle cells. Together our data uncover that YB1 is a key player in HuR-mediated stabilization of pro-myogenic mRNAs and provide the first indication that the mRNA stability mechanism is as complex as other key cellular processes such as mRNA decay and translation.


Assuntos
Proteína Semelhante a ELAV 1 , Fibras Musculares Esqueléticas , Fatores de Transcrição , Regiões 3' não Traduzidas , Proteínas ELAV/genética , Proteínas ELAV/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Linhagem Celular , Animais , Camundongos , Fatores de Transcrição/metabolismo
8.
Horiz. meÌud. (Impresa) ; 23(1)ene. 2023.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1430474

RESUMO

Objetivo: Conocer la relación entre el clima organizacional del personal de salud y la satisfacción de los usuarios atendidos por el Servicio de Atención Móvil de Urgencias (SAMU) en el contexto COVID-19, Piura. Materiales y métodos: Se aplicó una encuesta a 80 trabajadores de salud para evaluar el clima organizacional y a 110 usuarios del SAMU para evaluar su nivel de satisfacción y si cumplían con los criterios de selección. La encuesta tuvo dos secciones: una dirigida a los trabajadores del SAMU y otra, al usuario. Se evaluaron con escala tipo Likert. Resultados: El 51,3 % del personal de salud fueron hombres, de una edad promedio de 32,65 ± 6,8 % años y hubo más licenciados en enfermería (32,50 %), seguido de médicos (31,30 %). El 54,5 % de usuarios fueron hombres, de una edad promedio de 58,78 ± 20,97 años, el 57,3 % no presentaron ninguna comorbilidad y el 84,5 % utilizaron el servicio una vez. El clima organizacional del personal y sus dimensiones fueron saludables (96,58 ± 3,21). La mayoría (51,60 %) de los usuarios del SAMU se encontraron satisfechos (57/110), mientras que el 38,2 % (42/110) manifestaron estar medianamente satisfechos y el 10,20 % (11/110) mostraron su insatisfacción. Se comprueba la hipótesis principal que existe asociación entre el clima organizacional y la satisfacción de los usuarios atendidos por el SAMU (p < 0,005) y existe asociación entre las cinco dimensiones con la satisfacción de los usuarios. Conclusiones: Existe relación entre el clima organizacional de los trabajadores de salud del Servicio de Atención Móvil de Urgencias y la satisfacción de usuarios atendidos por este servicio en Piura. El clima organizacional y sus dimensiones, comparados con el instrumento elaborado por el Minsa, se encuentran saludables, la mayoría de los pacientes atendidos se mostraron satisfechos con la atención recibida y las comorbilidades más frecuentes fueron la hipertensión y la diabetes mellitus tipo 2.


Objective: To determine the relationship between the organizational climate among healthcare personnel and the satisfaction of users assisted by the Mobile Emergency Care Service (SAMU) in the context of COVID-19, Piura. Materials and methods: A Likert-scale survey was administered to 80 healthcare workers to assess the organizational climate and 110 SAMU users to assess their satisfaction level and whether they met the selection criteria. The survey had one section addressed to SAMU workers and another one to SAMU users. Results: Out of all healthcare personnel, 51.3 % were men with an average age of 32.65 ± 6.8 % years, and there were more registered nurses (32.50 %) than doctors (31.30 %). Out of all users, 54.5 % were men with an average age of 58.78 ± 20.97 years, 57.3 % had no comorbidities and 84.5 % used the service once. The organizational climate and its dimensions showed healthy outcomes (96.58 ± 3.21). Most SAMU users (51.60 %) were satisfied (57/110) while 38.20 % (42/110) were moderately satisfied and 10.20 % (11/110) showed dissatisfaction. The main hypothesis concerning the relationship between the organizational climate and the satisfaction of SAMU users (p < 0.005) was confirmed. Moreover, there was a relationship between the five dimensions and the satisfaction of users. Conclusions: There is a relationship between the organizational climate among SAMU healthcare workers and the satisfaction of SAMU users in Piura. The organizational climate and its dimensions, compared to the instrument developed by MINSA, showed healthy outcomes. Most patients were satisfied with the care received and the most frequent comorbidities were hypertension and type 2 diabetes mellitus.

9.
Nat Commun ; 13(1): 4102, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835744

RESUMO

Electromagnetic radiation-triggered therapeutic effect has attracted a great interest over the last 50 years. However, translation to clinical applications of photoactive molecular systems developed to date is dramatically limited, mainly because their activation requires excitation by low-energy photons from the ultraviolet to near infra-red range, preventing any activation deeper than few millimetres under the skin. Herein we conceive a strategy for photosensitive-system activation potentially adapted to biological tissues without any restriction in depth. High-energy stimuli, such as those employed for radiotherapy, are used to carry energy while molecular activation is provided by local energy conversion. This concept is applied to azobenzene, one of the most established photoswitches, to build a radioswitch. The radiation-responsive molecular system developed is used to trigger cytotoxic effect on cancer cells upon gamma-ray irradiation. This breakthrough activation concept is expected to expand the scope of applications of photosensitive systems and paves the way towards the development of original therapeutic approaches.


Assuntos
Fótons , Radiação Ionizante , Fótons/uso terapêutico
10.
EMBO Mol Med ; 13(7): e13591, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34096686

RESUMO

Cachexia syndrome develops in patients with diseases such as cancer and sepsis and is characterized by progressive muscle wasting. While iNOS is one of the main effectors of cachexia, its mechanism of action and whether it could be targeted for therapy remains unexplored. Here, we show that iNOS knockout mice and mice treated with the clinically tested iNOS inhibitor GW274150 are protected against muscle wasting in models of both septic and cancer cachexia. We demonstrate that iNOS triggers muscle wasting by disrupting mitochondrial content, morphology, and energy production processes such as the TCA cycle and acylcarnitine transport. Notably, iNOS inhibits oxidative phosphorylation through impairment of complexes II and IV of the electron transport chain and reduces ATP production, leading to energetic stress, activation of AMPK, suppression of mTOR, and, ultimately, muscle atrophy. Importantly, all these effects were reversed by GW274150. Therefore, our data establish how iNOS induces muscle wasting under cachectic conditions and provide a proof of principle for the repurposing of iNOS inhibitors, such as GW274150 for the treatment of cachexia.


Assuntos
Caquexia , Neoplasias , Animais , Humanos , Camundongos , Mitocôndrias , Músculos , Atrofia Muscular
11.
Anal Chem ; 93(16): 6508-6515, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33861925

RESUMO

Vaccine adjuvants are immunostimulatory substances used to improve and modulate the immune response induced by antigens. A better understanding of the antigen-adjuvant interactions is necessary to develop future effective vaccine. In this study, Taylor dispersion analysis (TDA) was successfully implemented to characterize the interactions between a polymeric adjuvant (poly(acrylic acid), SPA09) and a vaccine antigen in development for the treatment of Staphylococcus aureus. TDA allowed one to rapidly determine both (i) the size of the antigen-adjuvant complexes under physiological conditions and (ii) the percentage of free antigen in the adjuvant/antigen mixture at equilibrium and finally get the interaction parameters (stoichiometry and binding constant). The complex sizes obtained by TDA were compared to the results obtained by transmission electron microscopy, and the binding parameters were compared to results previously obtained by frontal analysis continuous capillary electrophoresis.


Assuntos
Adjuvantes Imunológicos , Antígenos , Vacinas , Eletroforese Capilar
12.
J Cell Physiol ; 236(10): 6836-6851, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33855709

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a disease of progressive scarring caused by excessive extracellular matrix (ECM) deposition and activation of α-SMA-expressing myofibroblasts. Human antigen R (HuR) is an RNA binding protein that promotes protein translation. Upon translocation from the nucleus to the cytoplasm, HuR functions to stabilize messenger RNA (mRNA) to increase protein levels. However, the role of HuR in promoting ECM production, myofibroblast differentiation, and lung fibrosis is unknown. Human lung fibroblasts (HLFs) treated with transforming growth factor ß1 (TGF-ß1) showed a significant increase in translocation of HuR from the nucleus to the cytoplasm. TGF-ß-treated HLFs that were transfected with HuR small interfering RNA had a significant reduction in α-SMA protein as well as the ECM proteins COL1A1, COL3A, and FN1. HuR was also bound to mRNA for ACTA2, COL1A1, COL3A1, and FN. HuR knockdown affected the mRNA stability of ACTA2 but not that of the ECM genes COL1A1, COL3A1, or FN. In mouse models of pulmonary fibrosis, there was higher cytoplasmic HuR in lung structural cells compared to control mice. In human IPF lungs, there was also more cytoplasmic HuR. This study is the first to show that HuR in lung fibroblasts controls their differentiation to myofibroblasts and consequent ECM production. Further research on HuR could assist in establishing the basis for the development of new target therapy for fibrotic diseases, such as IPF.


Assuntos
Transdiferenciação Celular , Proteína Semelhante a ELAV 1/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Miofibroblastos/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Transdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Proteína Semelhante a ELAV 1/genética , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/patologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Regulação da Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Miofibroblastos/patologia , Fator de Crescimento Transformador beta1/farmacologia
13.
Mol Cell Oncol ; 8(1): 1850161, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33553605

RESUMO

Cellular senescence is a double-edged sword that, depending on the context, acts as either a potent tumor protective mechanism or an age-related driver of diseases such as cancer. Our recent findings show that the rasGAP SH3-binding protein 1 (G3BP1) activates the senescent-associated secretory phenotype (SASP) that, in turn, mediates cancer growth/progression.

14.
Cells ; 11(1)2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-35011584

RESUMO

Patients with COPD may be at an increased risk for severe illness from COVID-19 because of ACE2 upregulation, the entry receptor for SARS-CoV-2. Chronic exposure to cigarette smoke, the main risk factor for COPD, increases pulmonary ACE2. How ACE2 expression is controlled is not known but may involve HuR, an RNA binding protein that increases protein expression by stabilizing mRNA. We hypothesized that HuR would increase ACE2 protein expression. We analyzed scRNA-seq data to profile ELAVL1 expression in distinct respiratory cell populations in COVID-19 and COPD patients. HuR expression and cellular localization was evaluated in COPD lung tissue by multiplex immunohistochemistry and in human lung cells by imaging flow cytometry. The regulation of ACE2 expression was evaluated using siRNA-mediated knockdown of HuR. There is a significant positive correlation between ELAVL1 and ACE2 in COPD cells. HuR cytoplasmic localization is higher in smoker and COPD lung tissue; there were also higher levels of cleaved HuR (CP-1). HuR binds to ACE2 mRNA but knockdown of HuR does not change ACE2 protein levels in primary human lung fibroblasts (HLFs). Our work is the first to investigate the association between ACE2 and HuR. Further investigation is needed to understand the mechanistic underpinning behind the regulation of ACE2 expression.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Proteína Semelhante a ELAV 1/genética , Regulação da Expressão Gênica , Pulmão/metabolismo , Idoso , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Células Cultivadas , Proteína Semelhante a ELAV 1/metabolismo , Feminino , Fibroblastos/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Pulmão/patologia , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/virologia , Interferência de RNA , RNA-Seq/métodos , SARS-CoV-2/fisiologia , Análise de Célula Única/métodos
15.
Life (Basel) ; 11(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374408

RESUMO

In a few years, space telescopes will investigate our Galaxy to detect evidence of life, mainly by observing rocky planets. In the last decade, the observation of exoplanet atmospheres and the theoretical works on biosignature gasses have experienced a considerable acceleration. The most attractive feature of the realm of exoplanets is that 40% of M dwarfs host super-Earths with a minimum mass between 1 and 30 Earth masses, orbital periods shorter than 50 days, and radii between those of the Earth and Neptune (1-3.8 R⊕). Moreover, the recent finding of cyanobacteria able to use far-red (FR) light for oxygenic photosynthesis due to the synthesis of chlorophylls d and f, extending in vivo light absorption up to 750 nm, suggests the possibility of exotic photosynthesis in planets around M dwarfs. Using innovative laboratory instrumentation, we exposed different cyanobacteria to an M dwarf star simulated irradiation, comparing their responses to those under solar and FR simulated lights. As expected, in FR light, only the cyanobacteria able to synthesize chlorophyll d and f could grow. Surprisingly, all strains, both able or unable to use FR light, grew and photosynthesized under the M dwarf generated spectrum in a similar way to the solar light and much more efficiently than under the FR one. Our findings highlight the importance of simulating both the visible and FR light components of an M dwarf spectrum to correctly evaluate the photosynthetic performances of oxygenic organisms exposed under such an exotic light condition.

16.
Vaccine ; 38(50): 7905-7915, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33153770

RESUMO

Hemagglutinin, the major surface protein of influenza viruses, was recombinantly expressed in eukaryotic cells as a monomer instead of its native trimer, and was only immunogenic when administered with an adjuvant [Pion et al. 2014]. In order to multimerize this antigen to increase its immunogenicity, a cysteine-rich peptide sequence found at the extreme C-terminus of lamprey variable lymphocyte receptor (VLR)-B antibodies was fused to various recombinant hemagglutinin (rHA) proteins from A and B influenza virus strains. The rHA-Lamp fusion (rHA fused to the lamprey sequence) protein was expressed in Leishmania tarentolae and Chinese hamster ovary (CHO) cells and shown to produce several multimeric forms. The multimers produced were very stable and more immunogenic in mice than monomeric rHA. The lamprey VLR-B sequence was also used to multimerize the neuraminidase (NA) of influenza viruses expressed in CHO cells. For some viral strains, the NA was expressed as a tetramer like the native viral NA form. In addition, the lamprey VLR-B sequence was fused with two surface antigens of Shigella flexneri 2a, the invasion plasmid antigen D and a double mutated soluble form of the membrane expression of the invasion plasmid antigen H namely MxiH. The fusion proteins were expressed in Escherichia coli to produce the respective multimer protein forms. The resulting proteins had similar multimeric forms as rHA-Lamp protein and were more immunogenic in mice than the monomer forms. In conclusion, the VLR-B sequence can be used to increase the immunogenicity of recombinant viral and bacterial antigens, thus negating the need for adjuvants.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vacinas contra Influenza , Animais , Anticorpos Antivirais , Antígenos de Bactérias , Antígenos Virais/genética , Vacinas Bacterianas , Células CHO , Cricetinae , Cricetulus , Lampreias/genética , Camundongos , Camundongos Endogâmicos BALB C
17.
Nat Commun ; 11(1): 4979, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020468

RESUMO

Cellular senescence is a known driver of carcinogenesis and age-related diseases, yet senescence is required for various physiological processes. However, the mechanisms and factors that control the negative effects of senescence while retaining its benefits are still elusive. Here, we show that the rasGAP SH3-binding protein 1 (G3BP1) is required for the activation of the senescent-associated secretory phenotype (SASP). During senescence, G3BP1 achieves this effect by promoting the association of the cyclic GMP-AMP synthase (cGAS) with cytosolic chromatin fragments. In turn, G3BP1, through cGAS, activates the NF-κB and STAT3 pathways, promoting SASP expression and secretion. G3BP1 depletion or pharmacological inhibition impairs the cGAS-pathway preventing the expression of SASP factors without affecting cell commitment to senescence. These SASPless senescent cells impair senescence-mediated growth of cancer cells in vitro and tumor growth in vivo. Our data reveal that G3BP1 is required for SASP expression and that SASP secretion is a primary mediator of senescence-associated tumor growth.


Assuntos
Senescência Celular/fisiologia , DNA Helicases/metabolismo , Neoplasias/patologia , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Células A549 , Animais , Carcinogênese , Linhagem Celular , Movimento Celular , Citocinas/metabolismo , DNA Helicases/antagonistas & inibidores , DNA Helicases/deficiência , Humanos , Inflamação , Camundongos , Neoplasias/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Proteínas de Ligação a Poli-ADP-Ribose/deficiência , RNA Helicases/antagonistas & inibidores , RNA Helicases/deficiência , Proteínas com Motivo de Reconhecimento de RNA/antagonistas & inibidores , Proteínas com Motivo de Reconhecimento de RNA/deficiência , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/metabolismo
18.
Mech Ageing Dev ; 192: 111382, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33049246

RESUMO

Stress granules (SGs) are membraneless organelles formed in response to insult. These granules are related to pathological granules found in age-related neurogenerative diseases such as Parkinson's and Alzheimer's. Previously, we demonstrated that senescent cells, which accumulate with age, exposed to chronic oxidative stress, are unable to form SGs. Here, we show that the senescent cells' inability to form SGs correlates with an upregulation in both the heat-shock response and autophagy pathways, both of which are well-established promoters of SG disassembly. Our data also reveals that the knockdown of HSP70 and ATG5, important components of the heat-shock response and autophagy pathways, respectively, restores the number of SGs formed in senescent cells exposed to chronic oxidative stress. Surprisingly, under these conditions, the depletion of HSP70 or ATG5 did not affect the clearance of these SGs during their recovery from chronic stress. These data reveal that senescent cells possess a unique heat-shock and autophagy-dependent ability to impair the formation of SGs in response to chronic stress, thereby expanding the existing understanding of SG dynamics in senescent cells and their potential contribution to age-related neurodegenerative diseases.


Assuntos
Envelhecimento/fisiologia , Proteína 5 Relacionada à Autofagia/metabolismo , Autofagia/fisiologia , Grânulos Citoplasmáticos/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Resposta ao Choque Térmico/fisiologia , Ribonucleoproteínas/metabolismo , Linhagem Celular , Senescência Celular , Regulação da Expressão Gênica , Humanos , Estresse Oxidativo/fisiologia , Estresse Fisiológico
20.
Nat Commun ; 10(1): 4171, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519904

RESUMO

The master posttranscriptional regulator HuR promotes muscle fiber formation in cultured muscle cells. However, its impact on muscle physiology and function in vivo is still unclear. Here, we show that muscle-specific HuR knockout (muHuR-KO) mice have high exercise endurance that is associated with enhanced oxygen consumption and carbon dioxide production. muHuR-KO mice exhibit a significant increase in the proportion of oxidative type I fibers in several skeletal muscles. HuR mediates these effects by collaborating with the mRNA decay factor KSRP to destabilize the PGC-1α mRNA. The type I fiber-enriched phenotype of muHuR-KO mice protects against cancer cachexia-induced muscle loss. Therefore, our study uncovers that under normal conditions HuR modulates muscle fiber type specification by promoting the formation of glycolytic type II fibers. We also provide a proof-of-principle that HuR expression can be targeted therapeutically in skeletal muscles to combat cancer-induced muscle wasting.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Neoplasias/complicações , Animais , Linhagem Celular , Linhagem Celular Tumoral , Estudos Transversais , Proteína Semelhante a ELAV 1/genética , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA