RESUMO
Leishmaniasis is a neglected disease mainly affecting low-income populations. Conventional treatment involves several side effects, is expensive, and, in addition, protozoa can develop resistance. Photodynamic therapy (PDT) is a promising alternative in treating the disease. PDT involves applying light at a specific wavelength to activate a photosensitive compound (photosensitizer, PS), to produce reactive oxygen species (ROS). Curcumin and its photochemical characteristics make it a good candidate for photodynamic therapy. Studies evaluating gene expression can help to understand the molecular events involved in the cell death caused by PDT. In the present study, RNA was extracted from promastigotes from the control and treated groups after applying PDT. RT-qPCR was performed to verify the expression of the putative ATPase beta subunit (ATPS), ATP synthase subunit A (F0F1), argininosuccinate synthase 1 (ASS), ATP-binding cassette subfamily G member 2 (ABCG2), glycoprotein 63 (GP63), superoxide dismutase (FeSODA), and glucose-6-phosphate dehydrogenase (G6PDH) genes (QR). The results suggest that PDT altered the expression of genes that participate in oxidative stress and cell death pathways, such as ATPS, FeSODA, and G6PD. The ATP-F0F1, ASS, and GP63 genes did not have their expression altered. However, it is essential to highlight that other genes may be involved in the molecular mechanisms of oxidative stress and, consequently, in the death of parasites.
Assuntos
Curcumina , Leishmania major , Fotoquimioterapia , Curcumina/farmacologia , Fotoquimioterapia/métodos , Leishmania major/genética , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Trifosfato de Adenosina , Linhagem Celular TumoralRESUMO
Cutaneous leishmaniasis is a neglected disease prevalent in tropical countries, and conventional treatment can cause several serious side effects. Photodynamic therapy (PDT) can be considered a promising treatment alternative, as it is non-invasive therapy that has no side effects and uses accessible and low-cost substances, such as curcumin. This study evaluated the PDT response with cationic and anionic BSA nanoparticles encapsulated with curcumin in macrophages infected with L. braziliensis, L. major, and L. amazonensis. The nanoparticle system was characterized using a steady-state technique, scanning electron microscopy (SEM) study, and its biological activity was evaluated using macrophage cell lines infected with different Leishmania species. All spectroscopy measurements demonstrated that BSA curcumin (BSACur) has good photophysical properties, and confocal microscopy shows that macrophages and protozoa internalized the nanoparticles. The viability test demonstrated that at low concentrations, such as 0.1, 0.7, and 1.0 µmol. L-1, there was a decrease in cell viability after PDT application. Furthermore, a decrease in the number of parasites recovered was observed in the PDT groups. The results allowed us to conclude that curcumin loaded into BSA nanoparticles may have potential application in drug delivery systems for PDT protocols, demonstrating reduced cell viability at lower concentrations than free curcumin.
Assuntos
Sobrevivência Celular , Curcumina , Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Soroalbumina Bovina , Curcumina/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Nanopartículas/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Leishmania braziliensis/efeitos dos fármacos , Camundongos , Cátions , Leishmaniose Cutânea/tratamento farmacológico , Leishmania major/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologiaRESUMO
Leishmaniasis is a zoonotic disease, regarded by WHO as a public health problem that has presented a significant increase in the recent years. Conventional treatment is toxic and leads to serious side effects. Photodynamic therapy has been studied as a treatment to cutaneous leishmaniasis. This study aimed to evaluate the cell viability, morphological changes, type of cell death, production of reactive oxygen species, and changes in the mitochondrial membrane and DNA fragmentation in Leishmania braziliensis and Leishmania major promastigotes. Confocal microscopy was used to quantify the fluorescence emitted by JC-1, Annexin V, and propidium iodide reagents. The trypan blue exclusion test was used to evaluate the viability of the cells, the mitochondrial activity was verified with MTT, and the morphological changes were analyzed for SEM and DNA damage using the comet assay. PDT using curcumin at 500, 125, and 31,25 µg/mL decreased the viability of the parasites and induced changes in the mitochondrial membrane potential. The production of reactive oxygen species was dose-dependent and was observed only in the groups submitted to PDT. DNA damage was also observed in the parasite cells. The morphology of the cells was affected mainly at the highest curcumin concentration, resulting in rounded cells with a shortened flagellum. When the type of cell death was analyzed, the prevalence of apoptosis was noted. The results support the use of curcumin as photosensitizer in PDT against Leishmania promastigotes in the treatment for cutaneous leishmaniasis.
Assuntos
Leishmania braziliensis , Leishmania major , Leishmaniose Cutânea , Fotoquimioterapia , Humanos , Leishmaniose Cutânea/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêuticoRESUMO
Cutaneous leishmaniasis (CL) is a neglected disease prevalent in tropical countries with the ability to cause skin lesions. Photodynamic therapy (PDT) represents a specific and topical option for the treatment of these lesions. This study evaluated the response of macrophages infected with L. braziliensis and L. major to PDT with curcumin. Curcumin concentrations were evaluated in serial dilutions from 500.0 to 7.8 µg/mL using LED (λ = 450 ± 5 nm), with a light dose of 10 J/cm2. The Trypan blue viability test, ultrastructural analysis by scanning electron microscopy (SEM), mitochondrial polarity by Rhodamine 123 (Rho 123), curcumin internalization by confocal microscopy, and counting of the recovered parasites after the PDT treatment were performed. The lowest concentrations of curcumin (15.6 and 7.8 µg/mL) presented photodynamic inactivation. Cell destruction and internalization of curcumin in both macrophages and intracellular parasites were observed in microscopy techniques. In addition, an increase in mitochondrial membrane polarity and a decrease in the number of parasites recovered was observed in the PDT groups. This study indicates that PDT with curcumin has the potential to inactivate infected macrophages and might act as a basis for future in vivo studies using the parameters herein discussed.
RESUMO
Photodynamic therapy (PDT) with photosensitizer methylene blue was applied to Leishmania braziliensis, and Fourier transform infrared (FTIR) spectroscopy was used to study biochemical changes in the parasite after PDT in comparison to untreated (C), only irradiation (I), and only photosensitizer (PS). Spectral analysis suggests increase in lipids, proteins, and protein secondary structures in PDT compared with C and decrease in nucleic acids and carbohydrates. Interestingly, these trends are different from PDT of Leishmania major species, wherein lipids decrease; there are minimal changes in secondary structures and increase in nucleic acids and carbohydrates. The study thus suggests possibility of different biomolecular players/pathways in PDT-induced death of L. braziliensis and L. major.