Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(7)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458538

RESUMO

High heat fluxes generated in electronics and semiconductor packages require materials with high thermal conductivity to effectively diffuse the heat and avoid local hotspots. Engineered heat spreading materials typically exhibit anisotropic conduction behavior due to their composite construction. The design of thermal management solutions is often limited by the lack of fast and accurate characterization techniques for such anisotropic materials. A popular technique for measuring the thermal diffusivity of bulk materials is the Ångstrom method, where a thin strip or rod of material is heated periodically at one end, and the corresponding transient temperature profile is used to infer the thermal diffusivity. However, this method is generally limited to the characterization of one-dimensional samples and requires multiple measurements with multiple samples to characterize anisotropic materials. Here, we present a new measurement technique for characterizing the isotropic and anisotropic in-plane thermal properties of thin films and sheets as an extension of the one-dimensional Ångstrom method and other lock-in thermography techniques. The measurement leverages non-contact infrared temperature mapping to measure the thermal response from laser-based periodic heating at the center of a suspended thin film sample. Uniquely, our novel data extraction method does not require precise knowledge of the boundary conditions. To validate the accuracy of this technique, numerical models are developed to generate transient temperature profiles for hypothetical anisotropic materials with known properties. The resultant temperature profiles are processed through our fitting algorithm to extract the in-plane thermal conductivities without knowledge of the input properties of the model. Across a wide range of in-plane thermal conductivities, these results agree well with the input values. Experiments demonstrate the approach for a known isotropic reference material and an anisotropic heat spreading material. The limits of accuracy of this technique are identified based on the experimental and sample parameters. Further standardization of this measurement technique will enable the development and characterization of engineered heat spreading materials with desired anisotropic properties for various applications.

2.
ACS Appl Mater Interfaces ; 14(43): 48960-48966, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36256868

RESUMO

Although a variety of methods to predict the effective thermal conductivity of porous foams have been proposed, the response of such materials under dynamic compressive loading has generally not been considered. Understanding the dynamic thermal behavior will widen the potential applications of porous foams and provide insights into methods of modifying material properties to achieve desired performance. Previous experimental work on the thermal conductivity of a flexible graphene composite under compression showed intriguing behavior: the cross-plane thermal conductivity remained approximately constant with increasing compression, despite the increasing mass density. In this work, we use molecular dynamics (MD) simulations and finite element analysis to study the variation in both the cross-plane and in-plane thermal conductivities by compressing isotropic graphene foams. We have found that, interestingly, the cross-plane thermal conductivity decreases with compression while the in-plane thermal conductivity increases; hence, the dynamic thermal transport of the graphene foam becomes anisotropic with a significant anisotropy ratio. Such observations cannot be explained by the conventional effective medium theory, which describes the increase of thermal conductivity to be proportional to mass density. Thus, we propose a model that can describe such anisotropic effective thermal conductivity of highly porous open-cell media during compression. The model is validated against the MD simulations as well as a larger-scale finite element simulation of an open-cell foam geometry.

4.
ACS Appl Mater Interfaces ; 14(14): 16601-16610, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35352561

RESUMO

Conductive nanofillers, if integrated in an organized manner, can improve the transport properties of polymer matrices without compromising on their light weight. However, the relationship between the particle assemblies and transport properties of such nanocomposites, especially the competing effects of connected nanofiller pathways compared to resistances at interparticle contacts, has not been quantitatively studied. In this work, with the model nanocomposite of maghemite nanoparticles in epoxy, a novel fabrication method has been demonstrated to align nanofillers and control the interparticle contact amount within such a nanofiller assembly, using nanoparticle surface functionalization and oscillating magnetic field application. The nanofiller assembly cross-sectional areas were measured by processing micro-CT images and compared with the measured electrical and thermal properties of the nanocomposites. In terms of thermal transport, when the nanofiller assembly cross-sectional area was small, the dominance of conductivity pathways was observed up to ∼4.7 vol %, while interfacial thermal resistance began to dominate when the nanofiller assembly cross-sectional area became larger than 2700 µm2.

5.
Nat Commun ; 12(1): 4915, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389704

RESUMO

Thermal switches have gained intense interest recently for enabling dynamic thermal management of electronic devices and batteries that need to function at dramatically varied ambient or operating conditions. However, current approaches have limitations such as the lack of continuous tunability, low switching ratio, low speed, and not being scalable. Here, a continuously tunable, wide-range, and fast thermal switching approach is proposed and demonstrated using compressible graphene composite foams. Large (~8x) continuous tuning of the thermal resistance is achieved from the uncompressed to the fully compressed state. Environmental chamber experiments show that our variable thermal resistor can precisely stabilize the operating temperature of a heat generating device while the ambient temperature varies continuously by ~10 °C or the heat generation rate varies by a factor of 2.7. This thermal device is promising for dynamic control of operating temperatures in battery thermal management, space conditioning, vehicle thermal comfort, and thermal energy storage.

6.
Sci Rep ; 11(1): 8705, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888743

RESUMO

With advances in flexible and wearable device technology, thermal regulation will become increasingly important. Fabrics and substrates used for such applications will be required to effectively spread any heat generated in the devices to ensure user comfort and safety, while also preventing overheating of the electronic components. Commercial fabrics consisting of ultra-high molecular weight polyethylene (UHMW-PE) fibers are currently used in personal body armor and sports gear owing to their high strength, durability, and abrasion resistance. In addition to superior mechanical properties, UHMW-PE fibers exhibit very high axial thermal conductivity due to a high degree of polymer chain orientation. However, these materials have not been widely explored for thermal management applications in flexible and wearable devices. Assessment of their suitability for such applications requires characterization of the thermal and mechanical properties of UHMW-PE in the fabric form that will ultimately be used to construct heat spreading materials. Here, we use advanced techniques to characterize the thermal and mechanical properties of UHMW-PE fabrics, as well as other conventional flexible materials and fabrics. An infrared microscopy-based approach measures the effective in-plane thermal conductivity, while an ASTM-based bend testing method quantifies the bending stiffness. We also characterize the effective thermal behavior of fabrics when subjected to creasing and thermal annealing to assess their reliability for relevant practical engineering applications. Fabrics consisting of UHMW-PE fibers have significantly higher thermal conductivities than the benchmark conventional materials while possessing good mechanical flexibility, thereby showcasing great potential as substrates for flexible and wearable heat spreading application.

7.
Sci Rep ; 10(1): 1067, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974476

RESUMO

Large area highly crystalline MoS2 and WS2 thin films were successfully grown on different substrates using radio-frequency magnetron sputtering technique. Structural, morphological and thermoelectric transport properties of MoS2, and WS2 thin films have been investigated systematically to fabricate high-efficient thermal energy harvesting devices. X-ray diffraction data revealed that crystallites of MoS2 and WS2 films are highly oriented in 002 plane with uniform grain size distribution confirmed through atomic force microscopy study. Surface roughness increases with substrate temperature and it plays a big role in electron and phonon scattering. Interestingly, MoS2 films also display low thermal conductivity at room temperature and strongly favors achievement of higher thermoelectric figure of merit value of up to 1.98. Raman spectroscopy data shows two distinct MoS2 vibrational modes at 380 cm-1 for E12g and 410 cm-1 for A1g. Thermoelectric transport studies further demonstrated that MoS2 films show p-type thermoelectric characteristics, while WS2 is an n-type material. We demonstrated high efficient pn-junction thermoelectric generator device for waste heat recovery and cooling applications.

8.
ACS Appl Mater Interfaces ; 10(50): 44126-44133, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30468065

RESUMO

Monitoring live movements of human body parts is becoming increasingly important in the context of biomedical and human machine technologies. The development of wearable strain sensors with high sensitivity and fast response is critical to address this need. In this article, we describe the fabrication of a wearable strain sensor made of a Au micromesh partially embedded in polydimethylsiloxane substrate. The sensor exhibits a high optical transmittance of 85%. The effective strain range for stretching is 0.02%-4.5% for a gauge factor of over 108. In situ scanning electron imaging and infrared thermal microscopy analysis have revealed that nanometric break junctions form throughout the wire network under strain; strain increases the number of such junctions, leading to a large change in the sheet resistance of the mesh. This aspect has been examined computationally with the findings that wire segments break successively with increasing strain and resistance increases linearly for lower values of strain and nonlinearly at higher values of strain because of formation of current bottlenecks. The semi-embedded nature of these Au microwires allows the broken wires to retract to the original positions, thus closing the nanogaps and regaining the original low resistance state. High repeatability as well as cyclic stability have been demonstrated in live examples involving human body activity, importantly while mounting the sensor in strategic remote locations away from the most active site where strains are highest.


Assuntos
Face , Mastigação , Movimento , Dispositivos Eletrônicos Vestíveis , Humanos
9.
ACS Appl Mater Interfaces ; 10(15): 12603-12611, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29565115

RESUMO

Rooftop solar thermal collectors have the potential to meet residential heating demands if deployed efficiently at low solar irradiance (i.e., 1 sun). The efficiency of solar thermal collectors depends on their ability to absorb incoming solar energy and minimize thermal losses. Most techniques utilize a vacuum gap between the solar absorber and the surroundings to eliminate conduction and convection losses, in combination with surface coatings to minimize reradiation losses. Here, we present an alternative approach that operates at atmospheric pressure with simple, black, absorbing surfaces. Silica based aerogels coated on black surfaces have the potential to act as simple and inexpensive solar thermal collectors because of their high transmission to solar radiation and low transmission to thermal radiation. To demonstrate their heat-trapping properties, we fabricated tetramethyl orthosilicate-based silica aerogels. A hydrophilic aerogel with a thickness of 1 cm exhibited a solar-averaged transmission of 76% and thermally averaged transmission of ≈1% (at 100 °C). To minimize unwanted solar absorption by O-H groups, we functionalized the aerogel to be hydrophobic, resulting in a solar-averaged transmission of 88%. To provide a deeper understanding of the link between aerogel properties and overall efficiency, we developed a coupled radiative-conductive heat transfer model and used it to predict solar thermal performance. Instantaneous solar thermal efficiencies approaching 55% at 1 sun and 80 °C were predicted. This study sheds light on the applicability of silica aerogels on black coatings for solar thermal collectors and offers design priorities for next-generation solar thermal aerogels.

10.
Sci Rep ; 7(1): 6233, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740212

RESUMO

Here we study single-crystalline silicon nanobeams having 470 nm width and 80 nm thickness cross section, where we produce tortuous thermal paths (i.e. labyrinths) by introducing slits to control the impact of the unobstructed "line-of-sight" (LOS) between the heat source and heat sink. The labyrinths range from straight nanobeams with a complete LOS along the entire length to nanobeams in which the LOS ranges from partially to entirely blocked by introducing slits, s = 95, 195, 245, 295 and 395 nm. The measured thermal conductivity of the samples decreases monotonically from ~47 W m-1 K-1 for straight beam to ~31 W m-1 K-1 for slit width of 395 nm. A model prediction through a combination of the Boltzmann transport equation and ab initio calculations shows an excellent agreement with the experimental data to within ~8%. The model prediction for the most tortuous path (s = 395 nm) is reduced by ~14% compared to a straight beam of equivalent cross section. This study suggests that LOS is an important metric for characterizing and interpreting phonon propagation in nanostructures.

11.
Rev Sci Instrum ; 88(4): 044901, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28456238

RESUMO

Over the past two decades, significant progress in the thermal metrology for thin films and wires has enabled new understanding of the thermal conductivity of nanostructures. However, a large variation in the measured thermal conductivity of similar nanostructured samples has been observed. In addition to potential differences from sample-to-sample, measurement uncertainty contributes to the observed variation in measured properties. Many now standard micro/nanoscale thermal measurement techniques require extensive calibration of the properties of the substrate and support structures and this calibration contributes to uncertainty. Within this work, we develop a simple, direct differential electrothermal measurement of thermal conductivity of micro/nanoscale sample films by extending conventional steady state electrothermal approaches. Specifically, we leverage a cross-beam measurement structure consisting of a suspended, composite heater beam (metal on silicon) with the sample structure (silicon) extending at a right angle from the center of the heater beam, in a configuration similar to the T-type measurements used for fibers and nanotubes. To accurately resolve the thermal conductivity of the sample, the steady-state Joule heating response of the cross-beam structure is measured. Then, the sample is detached from the heater beam with a Focused Ion Beam (FIB) tool enabling direct characterization of the composite heater beam thermal properties. The differential measurement of the structure before and after FIB cut enables direct extraction of the sample thermal conductivity. The effectiveness of this differential measurement technique is demonstrated by measuring thermal conductivity of a 200 nm silicon layer. Additionally, this new method enables investigation of the accuracy of conventional approaches for extracting sample thermal conductivity with the composite beam structure and conventional comparative approaches. The results highlight the benefits of the direct differential method for accurate measurements with minimal assumptions.

12.
ACS Appl Mater Interfaces ; 9(15): 13703-13712, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28326760

RESUMO

Ideally, transparent heaters exhibit uniform temperature, fast response time, high achievable temperatures, low operating voltage, stability across a range of temperatures, and high optical transmittance. For metal network heaters, unlike for uniform thin-film heaters, all of these parameters are directly or indirectly related to the network geometry. In the past, at equilibrium, the temperature distributions within metal networks have primarily been studied using either a physical temperature probe or direct infrared (IR) thermography, but there are limits to the spatial resolution of these cameras and probes, and thus, only average regional temperatures have typically been measured. However, knowledge of local temperatures within the network with a very high spatial resolution is required for ensuring a safe and stable operation. Here, we examine the thermal properties of random metal network thin-film heaters fabricated from crack templates using high-resolution IR microscopy. Importantly, the heaters achieve predominantly uniform temperatures throughout the substrate despite the random crack network structure (e.g., unequal sized polygons created by metal wires), but the temperatures of the wires in the network are observed to be significantly higher than the substrate because of the significant thermal contact resistance at the interface between the metal and the substrate. Last, the electrical breakdown mechanisms within the network are examined through transient IR imaging. In addition to experimental measurements of temperatures, an analytical model of the thermal properties of the network is developed in terms of geometrical parameters and material properties, providing insights into key design rules for such transparent heaters. Beyond this work, the methods and the understanding developed here extend to other network-based heaters and conducting films, including those that are not transparent.

13.
ACS Appl Mater Interfaces ; 8(27): 17461-71, 2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27322344

RESUMO

The production of continuous carbon nanotube (CNT) fibers and films has paved the way to leverage the superior properties of individual carbon nanotubes for novel macroscale applications such as electronic cables and multifunctional composites. In this manuscript, we synthesize fibers and films from CNT aerogels that are continuously grown by floating catalyst chemical vapor deposition (FCCVD) and measure thermal conductivity and natural convective heat transfer coefficient from the fiber and film. To probe the mechanisms of heat transfer, we develop a new, robust, steady-state thermal characterization technique that enables measurement of the intrinsic fiber thermal conductivity and the convective heat transfer coefficient from the fiber to the surrounding air. The thermal conductivity of the as-prepared fiber ranges from 4.7 ± 0.3 to 28.0 ± 2.4 W m(-1) K(-1) and depends on fiber volume fraction and diameter. A simple nitric acid treatment increases the thermal conductivity by as much as a factor of ∼3 for the fibers and ∼6.7 for the thin films. These acid-treated CNT materials demonstrate specific thermal conductivities significantly higher than common metals with the same absolute thermal conductivity, which means they are comparatively lightweight, thermally conductive fibers and films. Beyond thermal conductivity, the acid treatment enhances electrical conductivity by a factor of ∼2.3. Further, the measured convective heat transfer coefficients range from 25 to 200 W m(-2) K(-1) for all fibers, which is higher than expected for macroscale materials and demonstrates the impact of the nanoscale CNT features on convective heat losses from the fibers. The measured thermal and electrical performance demonstrates the promise for using these fibers and films in macroscale applications requiring effective heat dissipation.

14.
Nano Lett ; 15(1): 127-33, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25469709

RESUMO

Nanofluids have received much attention in part due to the range of properties possible with different combinations of nanoparticles and base fluids. In this work, we measure the viscosity of suspensions of graphite particles in ethylene glycol as a function of the volume fraction, shear rate, and temperature below and above the percolation threshold. We also measure and contrast the trends observed in the viscosity with increasing volume fraction to the thermal conductivity behavior of the same suspensions: above the percolation threshold, the slope that describes the rate of thermal conductivity enhancement with concentration reduces compared to below the percolation threshold, whereas that of the viscosity enhancement increases. While the thermal conductivity enhancement is independent of temperature, the viscosity changes show a strong dependence on temperature and exhibit different trends with respect to the temperature at different shear rates above the percolation threshold. Interpretation of the experimental observations is provided within the framework of Stokesian dynamics simulations of the suspension microstructure and suggests that although diffusive contributions are not important for the observed thermal conductivity enhancement, they are important for understanding the variations in the viscosity with changes of temperature and shear rate above the percolation threshold. The experimental results can be collapsed to a single master curve through calculation of a single dimensionless parameter (a Péclet number based on the rotary diffusivity of the graphite particles).

15.
Nat Commun ; 5: 4449, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-25043613

RESUMO

Currently, steam generation using solar energy is based on heating bulk liquid to high temperatures. This approach requires either costly high optical concentrations leading to heat loss by the hot bulk liquid and heated surfaces or vacuum. New solar receiver concepts such as porous volumetric receivers or nanofluids have been proposed to decrease these losses. Here we report development of an approach and corresponding material structure for solar steam generation while maintaining low optical concentration and keeping the bulk liquid at low temperature with no vacuum. We achieve solar thermal efficiency up to 85% at only 10 kW m(-2). This high performance results from four structure characteristics: absorbing in the solar spectrum, thermally insulating, hydrophilic and interconnected pores. The structure concentrates thermal energy and fluid flow where needed for phase change and minimizes dissipated energy. This new structure provides a novel approach to harvesting solar energy for a broad range of phase-change applications.

16.
Nanoscale Res Lett ; 7(1): 554, 2012 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-23039084

RESUMO

The nanoscale features in silicon nanowires (SiNWs) can suppress phonon propagation and strongly reduce their thermal conductivities compared to the bulk value. This work measures the thermal conductivity along the axial direction of SiNW arrays with varying nanowire diameters, doping concentrations, surface roughness, and internal porosities using nanosecond transient thermoreflectance. For SiNWs with diameters larger than the phonon mean free path, porosity substantially reduces the thermal conductivity, yielding thermal conductivities as low as 1 W/m/K in highly porous SiNWs. However, when the SiNW diameter is below the phonon mean free path, both the internal porosity and the diameter significantly contribute to phonon scattering and lead to reduced thermal conductivity of the SiNWs.

17.
ACS Nano ; 5(6): 4818-25, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21598962

RESUMO

Nanostructured composites containing aligned carbon nanotubes (CNTs) are very promising as interface materials for electronic systems and thermoelectric power generators. We report the first data for the thermal conductivity of densified, aligned multiwall CNT nanocomposite films for a range of CNT volume fractions. A 1 vol % CNT composite more than doubles the thermal conductivity of the base polymer. Denser arrays (17 vol % CNTs) enhance the thermal conductivity by as much as a factor of 18 and there is a nonlinear trend with CNT volume fraction. This article discusses the impact of CNT density on thermal conduction considering boundary resistances, increased defect concentrations, and the possibility of suppressed phonon modes in the CNTs.


Assuntos
Nanocompostos/química , Nanotubos de Carbono/química , Polímeros/química , Condutividade Elétrica , Eletrônica , Temperatura Alta , Nanoestruturas , Nanotecnologia/métodos , Propriedades de Superfície , Temperatura , Condutividade Térmica
18.
Artigo em Inglês | MEDLINE | ID: mdl-19227079

RESUMO

Experiments were conducted to compare the annealing of nano-porous aluminum oxide membranes by 2.45 GHz microwave radiation and by conventional (resistive element) furnace heating. The starting material was Al2O3 membranes that were 60 microm thick, 13 mm in diameter, and containing pores of approximately 200 nm diameter. Changes in the porosity and morphology were recorded from digital processing of scanning electron microscope (SEM) images. The data indicates that both microwave and conventionally-heated annealing resulted in a decrease of surface porosity and an apparent increase in the number of pores. However, microwave annealing consistently resulted in a 4-5% greater reduction in porosity and a greater increase in the number of (small) pores than conventionally-heated annealing. These results are consistent with a non-thermal mechanism for microwave-enhanced surface diffusion, although the complex morphology of the pores precluded a quantitative theoretical analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA