Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurochem ; 160(6): 643-661, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34935149

RESUMO

Multiple sclerosis (MS), especially in its progressive phase, involves early axonal and neuronal damage resulting from a combination of inflammatory mediators, demyelination, and loss of trophic support. During progressive disease stages, a microenvironment is created within the central nervous system (CNS) favoring the arrival and retention of inflammatory cells. Active demyelination and neurodegeneration have also been linked to microglia (MG) and astrocyte (AST)-activation in early lesions. While reactive MG can damage tissue, exacerbate deleterious effects, and contribute to neurodegeneration, it should be noted that activated MG possess neuroprotective functions as well, including debris phagocytosis and growth factor secretion. The progressive form of MS can be modeled by the prolonged administration to cuprizone (CPZ) in adult mice, as CPZ induces highly reproducible demyelination of different brain regions through oligodendrocyte (OLG) apoptosis, accompanied by MG and AST activation and axonal damage. Therefore, our goal was to evaluate the effects of a reduction in microglial activation through orally administered brain-penetrant colony-stimulating factor-1 receptor (CSF-1R) inhibitor BLZ945 (BLZ) on neurodegeneration and its correlation with demyelination, astroglial activation, and behavior in a chronic CPZ-induced demyelination model. Our results show that BLZ treatment successfully reduced the microglial population and myelin loss. However, no correlation was found between myelin preservation and neurodegeneration, as axonal degeneration was more prominent upon BLZ treatment. Concomitantly, BLZ failed to significantly offset CPZ-induced astroglial activation and behavioral alterations. These results should be taken into account when proposing the modulation of microglial activation in the design of therapies relevant for demyelinating diseases. Cover Image for this issue: https://doi.org/10.1111/jnc.15394.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Animais , Fatores Estimuladores de Colônias/efeitos adversos , Fatores Estimuladores de Colônias/metabolismo , Cuprizona/metabolismo , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Esclerose Múltipla/metabolismo , Bainha de Mielina/metabolismo
2.
J Alzheimers Dis ; 68(2): 439-458, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30775999

RESUMO

The accumulation and spreading of protein tau in the human brain are major features of neurodegenerative disorders known as tauopathies. In addition to several subcellular abnormalities, tau aggregation within neurons seems capable of triggering endoplasmic reticulum (ER) stress and the consequent unfolded protein response (UPR). In metazoans, full activation of a complex ER-UPR network may restore proteostasis and ER function or, if stress cannot be solved, commit cells to apoptosis. Due to these alternative outcomes (survival or death), the pharmacological manipulation of ER-UPR has become the focus of potential therapies in many human diseases, including tauopathies. Here we update and analyze the experimental data from human brain, cellular, and animal models linking tau accumulation and ER-UPR. We further discuss mechanistic aspects and put the ER-UPR into perspective as a possible therapeutic target in this group of diseases.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Estresse do Retículo Endoplasmático , Tauopatias/metabolismo , Tauopatias/patologia , Animais , Encéfalo/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Tauopatias/tratamento farmacológico
3.
Neurobiol Aging ; 60: 57-70, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28917667

RESUMO

The unfolded protein response (UPR) may be pathogenically related to Alzheimer's disease. Yet, the effects of chronic amyloid-ß42 (Aß42) accumulation and UPR activation upon neurotoxicity remain unclear. Here, we show that neuronal Aß42 expression in Drosophila activated the inositol-requiring protein-1/X-box binding protein 1 (XBP1) UPR branch before the onset of behavioral impairment and persisted with aging. Early upregulation of hsc3/BiP, a target of XBP1 and activating transcription factor 6 pathways, was also sustained in old animals. Downregulation of XBP1 enhanced neurotoxicity and the accumulation of Aß42 and polyubiquitinated proteins. Consistently, overexpression of spliced XBP1 reduced Aß42 and improved geotaxis in old flies. The activation of protein kinase RNA-like endoplasmic reticulum (ER) kinase contributed to the age-dependent geotaxis deficit. Spliced XBP1 gene targets ER degradation-enhancing mannosidase-like protein 1, ER degradation-enhancing mannosidase-like protein 2, and HRD1 were elevated in 5-day-old Aß42-expressing flies as compared to controls but not in 18-day-old flies. Our results indicate that inositol-requiring protein-1/XBP1 activation is neuroprotective and enhances Aß42 clearance. They also suggest that such response becomes inefficient with aging.


Assuntos
Envelhecimento , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Neuroproteção/genética , Fragmentos de Peptídeos/metabolismo , Transdução de Sinais , Proteína 1 de Ligação a X-Box/fisiologia , Animais
4.
Cell Rep ; 19(1): 72-85, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28380364

RESUMO

The small ventral lateral neurons (sLNvs) constitute a central circadian pacemaker in the Drosophila brain. They organize daily locomotor activity, partly through the release of the neuropeptide pigment-dispersing factor (PDF), coordinating the action of the remaining clusters required for network synchronization. Despite extensive efforts, the basic principles underlying communication among circadian clusters remain obscure. We identified classical neurotransmitters released by sLNvs through disruption of specific transporters. Adult-specific RNAi-mediated downregulation of the glycine transporter or impairment of glycine synthesis in LNv neurons increased period length by nearly an hour without affecting rhythmicity of locomotor activity. Electrophysiological recordings showed that glycine reduces spiking frequency in circadian neurons. Interestingly, downregulation of glycine receptor subunits in specific sLNv targets impaired rhythmicity, revealing involvement of glycine in information processing within the network. These data identify glycinergic inhibition of specific targets as a cue that contributes to the synchronization of the circadian network.


Assuntos
Ritmo Circadiano/fisiologia , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Glicina/metabolismo , Receptores de Glicina/metabolismo , Transmissão Sináptica , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Regulação para Baixo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Humanos , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , Interferência de RNA , Receptores de Glicina/genética
5.
Front Aging Neurosci ; 9: 61, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28352227

RESUMO

The accumulation of amyloid ß peptide (Aß) in the brain of Alzheimer's disease (AD) patients begins many years before clinical onset. Such process has been proposed to be pathogenic through the toxicity of Aß soluble oligomers leading to synaptic dysfunction, phospho-tau aggregation and neuronal loss. Yet, a massive accumulation of Aß can be found in approximately 30% of aged individuals with preserved cognitive function. Therefore, within the frame of the "amyloid hypothesis", compensatory mechanisms and/or additional neurotoxic or protective factors need to be considered and investigated. Here we describe a modifier genetic screen in Drosophila designed to identify genes that modulate toxicity of Aß42 in the CNS. The expression of Aß42 led to its accumulation in the brain and a moderate impairment of negative geotaxis at 18 days post-eclosion (d.p.e) as compared with genetic or parental controls. These flies were mated with a collection of lines carrying chromosomal deletions and negative geotaxis was assessed at 5 and 18 d.p.e. Our screen is the first to take into account all of the following features, relevant to sporadic AD: (1) pan-neuronal expression of wild-type Aß42; (2) a quantifiable complex behavior; (3) Aß neurotoxicity associated with progressive accumulation of the peptide; and (4) improvement or worsening of climbing ability only evident in aged animals. One hundred and ninety-nine deficiency (Df) lines accounting for ~6300 genes were analyzed. Six lines, including the deletion of 52 Drosophila genes with human orthologs, significantly modified Aß42 neurotoxicity in 18-day-old flies. So far, we have validated CG11796 and identified CG17249 as a strong candidate (whose human orthologs are HPD and PRCC, respectively) by using RNAi or mutant hemizygous lines. PRCC encodes proline-rich protein PRCC (ppPRCC) of unknown function associated with papillary renal cell carcinoma. HPD encodes 4-hydroxyphenylpyruvate dioxygenase (HPPD), a key enzyme in tyrosine degradation whose Df causes autosomal recessive Tyrosinemia type 3, characterized by mental retardation. Interestingly, lines with a partial Df of HPD ortholog showed increased intraneuronal accumulation of Aß42 that coincided with geotaxis impairment. These previously undetected modifiers of Aß42 neurotoxicity in Drosophila warrant further study to validate their possible role and significance in the pathogenesis of sporadic AD.

6.
Mol Neurodegener ; 9: 5, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24405716

RESUMO

BACKGROUND: Familial British and Familial Danish dementias (FBD and FDD, respectively) are associated with mutations in the BRI2 gene. Processing of the mutated BRI2 protein leads to the accumulation in the brain of the 34-mer amyloid Bri (ABri) and amyloid Dan (ADan) peptides, accompanied by neurofibrillary tangles. Recently, transgenic mice successfully reproduced different aspects of FDD, while modeling of FBD in vivo has been more difficult. In this work we have modeled FBD and FDD in Drosophila and tested the hypothesis that ABri and ADan are differentially neurotoxic. RESULTS: By using site-directed insertion, we generated transgenic lines carrying ABri, ADan, Bri2-23 (the normal product of wild-type BRI2 processing) and amyloid-ß (Aß) 1-42 as a well-characterized neurotoxic peptide, alone or with a His-tag. Therefore, we avoided random insertion effects and were able to compare levels of accumulation accurately. Peptides were expressed with the GAL4-Upstream Activating Sequence (UAS) system using specific drivers. Despite low levels of expression, toxicity in the eye was characterized by mild disorganization of ommatidia and amyloid peptides accumulation. The highest toxicity was seen for ADan, followed by Aß42 and ABri. Pan-neuronal expression in the CNS revealed an age-dependent toxicity of amyloid peptides as determined by the ability of flies to climb in a geotaxis paradigm when compared to Bri2-23. This effect was stronger for ADan, detected at 7 days post-eclosion, and followed by ABri and Aß42, whose toxicity became evident after 15 and 21 days, respectively. Histological analysis showed mild vacuolization and thioflavine-S-negative deposits of amyloid peptides. In contrast, the over-expression of amyloid peptides in the specific subset of lateral neurons that control circadian locomotor activity showed no toxicity. CONCLUSIONS: Our results support the differential neurotoxicity of ADan and ABri in the Drosophila eye and CNS at low expression levels. Such differences may be partially attributed to rates of aggregation and accumulation. In the CNS, both peptides appear to be more neurotoxic than wild-type Aß42. These Drosophila models will allow a systematic and unambiguous comparison of differences and similarities in the mechanisms of toxicity of diverse amyloid peptides associated with dementia.


Assuntos
Catarata , Ataxia Cerebelar , Angiopatia Amiloide Cerebral Familiar , Surdez , Demência , Modelos Animais de Doenças , Glicoproteínas de Membrana/toxicidade , Proteínas Adaptadoras de Transdução de Sinal , Neuropatias Amiloides Familiares , Animais , Animais Geneticamente Modificados , Catarata/genética , Ataxia Cerebelar/genética , Angiopatia Amiloide Cerebral Familiar/genética , Surdez/genética , Demência/genética , Drosophila melanogaster , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA