Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Front Immunol ; 14: 1200769, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346043

RESUMO

Introduction: Systemic lupus erythematosus is an autoimmune disease with multisystemic involvement including intestinal inflammation. Lupus-associated intestinal inflammation may alter the mucosal barrier where millions of commensals have a dynamic and selective interaction with the host immune system. Here, we investigated the consequences of the intestinal inflammation in a TLR7-mediated lupus model. Methods: IgA humoral and cellular response in the gut was measured. The barrier function of the gut epithelial layer was characterised. Also, microbiota composition in the fecal matter was analysed as well as the systemic humoral response to differential commensals. Results: The lupus-associated intestinal inflammation modifies the IgA+ B cell response in the gut-associated lymphoid tissue in association with dysbiosis. Intestinal inflammation alters the tight junction protein distribution in the epithelial barrier, which correlated with increased permeability of the intestinal barrier and changes in the microbiota composition. This permeability resulted in a differential humoral response against intestinal commensals. Discussion: Lupus development can cause alterations in microbiota composition, allowing specific species to colonize only the lupus gut. Eventually, these alterations and the changes in gut permeability induced by intestinal inflammation could lead to bacterial translocation.


Assuntos
Doenças Autoimunes , Humanos , Linfócitos B , Translocação Bacteriana , Inflamação , Imunoglobulina A
2.
mSystems ; 8(3): e0007923, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37219498

RESUMO

The pks island is one of the most prevalent pathogenicity islands among the Escherichia coli strains that colonize the colon of colorectal carcinoma (CRC) patients. This pathogenic island encodes the production of a nonribosomal polyketide-peptide named colibactin, which induces double-strand breaks in DNA molecules. Detection or even depletion of this pks-producing bacteria could help to understand the role of these strains in the context of CRC. In this work, we performed a large-scale in silico screening of the pks cluster in more than 6,000 isolates of E. coli. The results obtained reveal that not all the pks-detected strains could produce a functional genotoxin and, using antibodies against pks-specific peptides from surface cell proteins, a methodology for detection and depletion of pks+ bacteria in gut microbiotas was proposed. With our method, we were able to deplete a human gut microbiota of this pks+ strains, opening the door to strain-directed microbiota modification and intervention studies that allow us to understand the relation between these genotoxic strains and some gastrointestinal diseases. IMPORTANCE The human gut microbiome has also been hypothesized to play a crucial role in the development and progression of colorectal carcinoma (CRC). Between the microorganisms of this community, the Escherichia coli strains carrying the pks genomic island were shown to be capable of promoting colon tumorigenesis in a colorectal cancer mouse model, and their presence seems to be directly related to a distinct mutational signature in patients suffering CRC. This work proposes a novel method for the detection and depletion of pks-carrying bacteria in human gut microbiotas. In contrast to methods based on probes, this methodology allows the depletion of low-abundance bacterial strains maintaining the viability of both targeted and non-targeted fractions of the microbiota, allowing the study of the contribution of these pks-carrying strains to different diseases, such as CRC, and their role in other physiological, metabolic or immune processes.


Assuntos
Neoplasias Colorretais , Proteínas de Escherichia coli , Microbioma Gastrointestinal , Camundongos , Animais , Humanos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutação , Proteínas de Membrana/genética , Microbioma Gastrointestinal/genética , Neoplasias Colorretais/microbiologia
3.
Food Res Int ; 165: 112481, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869494

RESUMO

This work reports on the first described aerotolerant Bifidobacterium bifidum strain, Bifidobacterium bifidum IPLA60003, which has the ability to form colonies on the surface of agar plates under aerobic conditions, a weird phenotype that to our knowledge has never been observed in B. bifidum. The strain IPLA60003 was generated after random UV mutagenesis from an intestinal isolate. It incorporates 26 single nucleotide polymorphisms that activate the expression of native oxidative-defense mechanisms such as the alkyl hydroxyperoxide reductase, the glycolytic pathway and several genes coding for enzymes involved in redox reactions. In the present work, we discuss the molecular mechanisms underlying the aerotolerance phenotype of B. bifidum IPLA60003, which will open new strategies for the selection and inclusion of probiotic gut strains and next generation probiotics into functional foods.


Assuntos
Bifidobacterium bifidum , Probióticos , Ágar , Alimento Funcional , Conhecimento
4.
Microbiol Spectr ; 11(1): e0181722, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36598219

RESUMO

Faecalibacterium represents one of the most abundant bacterial groups in the human intestinal microbiota of healthy adults and can represent more than 10% of the total bacterial population, Faecalibacterium prausnitzii being the only recognized species up to the past year. Reduction in the abundance of F. prausnitzii in the human gut has been linked to several human disorders, such as Crohn's disease. In this study, we developed a strategy to modify the relative abundance of F. prausnitzii in fecal microbiotas as a means of evaluating its contribution to the immunomodulatory effect of intestinal microbiotas with different F. prausnitzii contents using a peripheral blood mononuclear cell (PBMC) model. We used a polyclonal antibody against the surface of F. prausnitzii M21 to capture the bacterium from synthetic and human fecal microbiotas using immunoseparation techniques. As a proof-of-principle study, the levels of immunomodulation exerted by microbiotas of healthy donors (HDs) with different relative abundances of F. prausnitzii, achieved with the above-mentioned immunoseparation technique, were evaluated in a PBMC model. For this purpose, PBMCs were cocultivated with the modified microbiotas or a pure culture of F. prausnitzii and, subsequently, the microbiota of Crohn's donors was added to the coculture. The cytokine concentration was determined, showing that our experimental model supports the anti-inflammatory effects of this bacterium. IMPORTANCE There is increasing interest in deciphering the contribution of gut microbiota species to health and disease amelioration. The approach proposed herein provides a novel and affordable strategy to probe deeply into microbiota-host interactions by strategically modifying the relative abundance of specific gut microbes, hence facilitating the study of their contribution to a given trait of the microbiota.


Assuntos
Doença de Crohn , Microbiota , Adulto , Humanos , Faecalibacterium prausnitzii , Leucócitos Mononucleares , Fezes/microbiologia
5.
Crit Rev Microbiol ; 49(5): 556-577, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35749433

RESUMO

Since its development in the 1960s, flow cytometry (FCM) was quickly revealed a powerful tool to analyse cell populations in medical studies, yet, for many years, was almost exclusively used to analyse eukaryotic cells. Instrument and methodological limitations to distinguish genuine bacterial signals from the background, among other limitations, have hampered FCM applications in bacteriology. In recent years, thanks to the continuous development of FCM instruments and methods with a higher discriminatory capacity to detect low-size particles, FCM has emerged as an appealing technique to advance the study of microbes, with important applications in research, clinical and industrial settings. The capacity to rapidly enumerate and classify individual bacterial cells based on viability facilitates the monitoring of bacterial presence in foodstuffs or clinical samples, reducing the time needed to detect contamination or infectious processes. Besides, FCM has stood out as a valuable tool to advance the study of complex microbial communities, or microbiomes, that are very relevant in the context of human health, as well as to understand the interaction of bacterial and host cells. This review highlights current developments in, and future applications of, FCM in bacteriology, with a focus on those related to food and clinical microbiology.


Assuntos
Bacteriologia , Humanos , Citometria de Fluxo/métodos , Bactérias/genética , Microbiologia de Alimentos
6.
Sci Rep ; 11(1): 1270, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446697

RESUMO

This work describes a new procedure that allows the targeted modification of the human gut microbiota by using antibodies raised against bacterial surface-associated proteins specific to the microorganism of interest. To this end, a polyclonal antibody recognising the surface-associated protein Surface Layer Protein A of Lactobacillus acidophilus DSM20079T was developed. By conjugating this antibody with fluorescent probes and magnetic particles, we were able to specifically identify this bacterium both in a synthetic, and in real gut microbiotas by means of a flow cytometry approach. Further, we demonstrated the applicability of this antibody to deplete complex human gut microbiotas from L. acidophilus in a single step. L. acidophilus was found to interact with other bacteria both in synthetic and in real microbiotas, as reflected by its concomitant depletion together with other species. Further optimization of the procedure including a trypsin step enabled to achieve the selective and complete isolation of this species. Depleting a single species from a gut microbiota, using antibodies recognizing specific cell surface elements of the target organism, will open up novel ways to tackle research on the specific immunomodulatory and metabolic contributions of a bacterium of interest in the context of a complex human gut microbiota, including the investigation into therapeutic applications by adding/depleting a key bacterium. This represents the first work in which an antibody/flow-cytometry based application enabled the targeted edition of human gut microbiotas, and represents the basis for the design of precision microbiome-based therapies.


Assuntos
Anticorpos/química , Proteínas de Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Lactobacillus acidophilus/isolamento & purificação , Proteínas de Bactérias/química , Citometria de Fluxo , Humanos , Lactobacillus acidophilus/química , Microbiota
7.
Clin Immunol ; 192: 20-29, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29608971

RESUMO

Immunosenescence in chronic heart failure (CHF) is characterized by a high frequency of differentiated T-lymphocytes, contributing to an inflammatory status and a deficient ability to generate immunocompetent responses. CMV is the best known inducer of T-lymphocyte differentiation, and is associated with the phenomenon of immunosenescence. In this study, we included 58 elderly chronic heart failure patients (ECHF), 60 healthy elderly controls (HEC), 40 young chronic heart failure patients (YCHF) and 40 healthy young controls (HYC). High differentiation of CD8+ T-lymphocytes was found in CMV-seropositive patients; however, the differentiation of CD4+ T-lymphocytes was increased in CMV-seropositive but also in CHF patients. Anti-CMV antibody titers showed positive correlation with more differentiated CD4+ and CD8+ subsets and inverse correlation with CD4/CD8 ratio. Immunosenescence found in CHF patients is mainly due to the dynamics of CMV-infection, since the differentiation of T-lymphocyte subsets is related not only to CMV-infection, but also to anti-CMV antibody titers.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Insuficiência Cardíaca/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/imunologia , Relação CD4-CD8 , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/virologia , Doença Crônica , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/virologia , Feminino , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/virologia , Humanos , Masculino , Pessoa de Meia-Idade
8.
PLoS One ; 13(4): e0194789, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29641536

RESUMO

Anti-CMV (cytomegalovirus) antibody titers are related to immune alterations and increased risk of mortality. To test whether they represent a marker of infection history, we analyzed the effect of viral reactivations on the production of specific antibodies in kidney transplant patients. We quantified CMV-DNAemia and antibody titers in 58 kidney transplant patients before transplantation and during a follow-up of 315 days (standard deviation, SD: 134.5 days). In order to calculate the intensity of the infection, we plotted the follow-up time of the infection on the x-axis and the number of DNA-CMV copies on the y-axis and calculated the area under the curve (CMV-AUC). The degree of T-lymphocyte differentiation was analyzed with flow cytometry, the cells were labelled with different monoclonal antibodies in order to distinguish their differentiation state, from naive T-cells to senescent T-cells. Peak viremia was significantly higher in patients experiencing a primary infection (VI) compared to patients experiencing viral reactivation (VR). Our data indicate that the overall CMV viral load over the course of a primary infection is significantly higher than in a reactivation of a previously established infection. Whereas patients who experienced an episode of CMV reactivation during the course of our observation showed increased levels of CMV-specific antibodies, patients who did not experience CMV reactivation (WVR) showed a drop in CMV antibody levels that corresponds to an overall drop in antibody levels, probably due to the continuing immunosuppression after the renal transplant. We found a positive correlation between the CMV viremia over the course of the infection or reactivation and the CMV-specific antibody titers in the examined patients. We also observed a positive correlation between anti-CMV titers and T-cell differentiation. In conclusion, our data show that anti-CMV antibody titers are related to the course of CMV infection in kidney transplant patients.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Citomegalovirus/imunologia , Falência Renal Crônica/complicações , Transplante de Rim/efeitos adversos , Ativação Viral , Adulto , Idoso , Área Sob a Curva , Linfócitos T CD8-Positivos/imunologia , Citomegalovirus , DNA Viral , Feminino , Seguimentos , Antígenos HLA/imunologia , Humanos , Imunofenotipagem , Terapia de Imunossupressão , Falência Renal Crônica/cirurgia , Falência Renal Crônica/virologia , Masculino , Pessoa de Meia-Idade , Carga Viral , Viremia/tratamento farmacológico
9.
Innate Immun ; 23(5): 476-481, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28651467

RESUMO

Large genome-wide analysis studies (GWAS) and meta-analyses have dramatically increased our knowledge of the genetic risk factors of inflammatory bowel disease (IBD), identifying at least 163 loci. The endoplasmic reticulum aminopeptidase-2 ( ERAP2) gene has been reported as a potential candidate gene for IBD. GWAS have also shown the potential associations between ERAP single nucleotide polymorphisms (SNP) loci and susceptibility to several autoimmune diseases, and ERAP1 and ERAP2 polymorphisms are related to HLA class I-associated diseases, including ankylosing spondylitis and Behçet's disease. Interestingly, these associations were confined to individuals carrying HLA class I-risk alleles. The aim of this study was to investigate the association of ERAP1 and ERAP2 SNPs with IBD in a Spanish population, analysing their possible interaction with specific HLA-C alleles to IBD susceptibility. A total of 367 individuals were divided into 216 IBD cases and 151 controls. SNP genotyping was performed using TaqMan® genotyping assays, whereas HLA-C typing was analysed by sequence-specific oligonucleotide probing. Herein, we report an association of the ERAP1 SNP rs30187 with the HLA-C*07 allele. The existence of shared inflammatory pathways in immunologically related diseases together with the understanding of ERAP1 function may offer clues to novel treatment strategies.


Assuntos
Aminopeptidases/genética , Genótipo , Antígenos HLA-C/genética , Doenças Inflamatórias Intestinais/genética , Antígenos de Histocompatibilidade Menor/genética , Apresentação de Antígeno , Citotoxicidade Imunológica , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Modelos Imunológicos , Mimetismo Molecular , Polimorfismo de Nucleotídeo Único , Risco , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA