Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Hum Brain Mapp ; 45(1): e26538, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38063284

RESUMO

Surgical menopause causes a sharp drop in estrogen levels in middle-aged women, thus preventing the gradual physiological adaptation that is characteristic of the perimenopause. Previous studies suggest that surgical menopause might increase the risk of dementia later in life. In addition, the transition to motherhood entails long-lasting endocrine and neuronal adaptations. We compared differences in whole-brain cortical volume between women who reached menopause by surgery and a group of women who reached spontaneous non-surgical menopause and determined whether these cortical differences were influenced by previous childbearing. Using surface-based neuroimaging techniques, we investigated cortical volume differences in 201 middle-aged women (134 women who experienced non-surgical menopause, 78 of whom were parous women; and 67 women who experienced surgical menopause, 39 of whom were parous women). We found significant atrophy in the frontal and temporal regions in women who experienced surgical menopause. Nulliparous women with surgical menopause showed significant lower cortical volume in the left temporal gyrus extending to the medial temporal lobe cortex, as well as in the precuneus bilaterally compared to parous women with surgical menopause; whereas our results revealed no significant differences between parous women with surgical menopause and both parous and nulliparous women who reached a non-surgical menopause. Furthermore, in the surgical menopause group, we found a negative correlation between cortical volume and age at first pregnancy in the temporal lobe. Our study suggests that the long-term brain remodeling of parity may mitigate the neural impact of the sudden drop in estrogen levels that characterizes surgical menopause.


Assuntos
Menopausa , Perimenopausa , Gravidez , Pessoa de Meia-Idade , Feminino , Humanos , Paridade , Encéfalo/diagnóstico por imagem , Estrogênios
2.
Neuroinformatics ; 21(1): 145-162, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36008650

RESUMO

The archetypical folded shape of the human cortex has been a long-standing topic for neuroscientific research. Nevertheless, the accurate neuroanatomical segmentation of sulci remains a challenge. Part of the problem is the uncertainty of where a sulcus transitions into a gyrus and vice versa. This problem can be avoided by focusing on sulcal fundi and gyral crowns, which represent the topological opposites of cortical folding. We present Automated Brain Lines Extraction (ABLE), a method based on Laplacian surface collapse to reliably segment sulcal fundi and gyral crown lines. ABLE is built to work on standard FreeSurfer outputs and eludes the delineation of anastomotic sulci while maintaining sulcal fundi lines that traverse the regions with the highest depth and curvature. First, it segments the cortex into gyral and sulcal surfaces; then, each surface is spatially filtered. A Laplacian-collapse-based algorithm is applied to obtain a thinned representation of the surfaces. This surface is then used for careful detection of the endpoints of the lines. Finally, sulcal fundi and gyral crown lines are obtained by eroding the surfaces while preserving the connectivity between the endpoints. The method is validated by comparing ABLE with three other sulcal extraction methods using the Human Connectome Project (HCP) test-retest database to assess the reproducibility of the different tools. The results confirm ABLE as a reliable method for obtaining sulcal lines with an accurate representation of the sulcal topology while ignoring anastomotic branches and the overestimation of the sulcal fundi lines. ABLE is publicly available via https://github.com/HGGM-LIM/ABLE .


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Córtex Cerebral , Encéfalo/diagnóstico por imagem
3.
J Atten Disord ; 26(12): 1563-1575, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35947490

RESUMO

OBJECTIVE: Neuroimaging studies in children with ADHD indicate that their brain exhibits an atypical functional connectivity pattern characterized by increased local connectivity and decreased distant connectivity. We aim to evaluate if the local and distant distribution of functional connectivity is also altered in adult samples with ADHD who have never received medication before. METHODS: We compared local and distant functional connectivity between 31 medication-naïve adults with ADHD and 31 healthy controls and tested whether this pattern was associated with symptoms severity scores. RESULTS: ADHD sample showed increased local connectivity in the dACC and the SFG and decreased local connectivity in the PCC. CONCLUSION: Results parallel those obtained in children samples suggesting a deficient integration within the DMN and segregation between DMN, FPN, and VAN. These results are consistent with the three main frameworks that explain ADHD: the neurodevelopmental delay hypothesis, the DMN interference hypothesis and multi-network models.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Mapeamento Encefálico , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Criança , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais
4.
J Atten Disord ; 26(13): 1788-1801, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35684934

RESUMO

Objective: Neuroimaging studies in children with ADHD indicate that their brain exhibits an atypical functional connectivity pattern characterized by increased local connectivity and decreased distant connectivity. We aim to evaluate if the local and distant distribution of functional connectivity is also altered in adult samples with ADHD who have never received medication before. Methods: We compared local and distant functional connectivity between 31 medication-naïve adults with ADHD and 31 healthy controls and tested whether this pattern was associated with symptoms severity scores. Results: ADHD sample showed increased local connectivity in the dACC and the SFG and decreased local connectivity in the PCC. Conclusion: Results parallel those obtained in children samples suggesting a deficient integration within the DMN and segregation between DMN, FPN, and VAN. These results are consistent with the three main frameworks that explain ADHD: the neurodevelopmental delay hypothesis, the DMN interference hypothesis, and multi-network models.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Mapeamento Encefálico , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Criança , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais
5.
J Neurol ; 269(6): 3189-3203, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34999956

RESUMO

BACKGROUND: SPG4 is a subtype of hereditary spastic paraplegia (HSP), an upper motor neuron disorder characterized by axonal degeneration of the corticospinal tracts and the fasciculus gracilis. The few neuroimaging studies that have focused on the spinal cord in HSP are based mainly on the analysis of structural characteristics. METHODS: We assessed diffusion-related characteristics of the spinal cord using diffusion tensor imaging (DTI), as well as structural and shape-related properties in 12 SPG4 patients and 14 controls. We used linear mixed effects models up to T3 in order to analyze the global effects of 'group' and 'clinical data' on structural and diffusion data. For DTI, we carried out a region of interest (ROI) analysis in native space for the whole spinal cord, the anterior and lateral funiculi, and the dorsal columns. We also performed a voxelwise analysis of the spinal cord to study local diffusion-related changes. RESULTS: A reduced cross-sectional area was observed in the cervical region of SPG4 patients, with significant anteroposterior flattening. DTI analyses revealed significantly decreased fractional anisotropy (FA) and increased radial diffusivity at all the cervical and thoracic levels, particularly in the lateral funiculi and dorsal columns. The FA changes in SPG4 patients were significantly related to disease severity, measured as the Spastic Paraplegia Rating Scale score. CONCLUSIONS: Our results in SPG4 indicate tract-specific axonal damage at the level of the cervical and thoracic spinal cord. This finding is correlated with the degree of motor disability.


Assuntos
Pessoas com Deficiência , Transtornos Motores , Paraplegia Espástica Hereditária , Anisotropia , Imagem de Tensor de Difusão/métodos , Humanos , Tratos Piramidais , Paraplegia Espástica Hereditária/diagnóstico por imagem , Medula Espinal/diagnóstico por imagem
6.
Artigo em Inglês | MEDLINE | ID: mdl-34396852

RESUMO

Objective: SPG4 is an autosomal dominant pure form of hereditary spastic paraplegia (HSP) caused by mutations in the SPAST gene. HSP is considered an upper motor neuron disorder characterized by progressive retrograde degeneration, or "dying-back" phenomenon, of the corticospinal tract's longest axons. Neuroimaging studies mainly focus on white matter changes and, although previous studies reported cortical thinning in complicated HSP forms, cortical changes remain unclear in SPG4 patients. This work aimed to compare changes in white matter microstructure and cortical thickness between 12 SPG4 patients and 22 healthy age-matched controls. We also explore whether white matter alterations are related to cortical thickness and their correlation with clinical symptoms. Methods: we used fixel-based analysis, an advanced diffusion-weighted imaging technique, and probabilistic tractography of the corticospinal tracts. We also analyzed cortical morphometry using whole-brain surface-based and atlas-based methods in sensorimotor areas. Results: SPG4 patients showed bilateral involvement in the corticospinal tracts; this was more intense in the distal portion than in the upper segments and was associated with the degree of clinical impairment. We found a significant correlation between disease severity and fiber density and cross-section of the corticospinal tracts. Furthermore, corticospinal tract changes were significantly correlated with bilateral cortical thinning in the precentral gyrus in SPG4 patients. Conclusions: Our data point to axonal damage of the corticospinal motor neurons in SPG4 patients might be related to cortical thinning in motor regions.


Assuntos
Esclerose Lateral Amiotrófica , Córtex Motor , Paraparesia Espástica , Paraplegia Espástica Hereditária , Humanos , Córtex Motor/diagnóstico por imagem , Tratos Piramidais/diagnóstico por imagem , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/genética , Espastina/genética
7.
Brain Sci ; 11(2)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525512

RESUMO

Neuroimaging researchers commonly assume that the brain of a mother is comparable to that of a nulliparous woman. However, pregnancy leads to pronounced gray matter volume reductions in the mother's brain, which have been associated with maternal attachment towards the baby. Beyond two years postpartum, no study has explored whether these brain changes are maintained or instead return to pre-pregnancy levels. The present study tested whether gray matter volume reductions detected in primiparous women are still present six years after parturition. Using data from a unique, prospective neuroimaging study, we compared the gray matter volume of 25 primiparous and 22 nulliparous women across three sessions: before conception (n = 25/22), during the first months of postpartum (n = 25/21), and at six years after parturition (n = 7/5). We found that most of the pregnancy-induced gray matter volume reductions persist six years after parturition (classifying women as having been pregnant or not with 91.67% of total accuracy). We also found that brain changes at six years postpartum are associated with measures of mother-to-infant attachment. These findings open the possibility that pregnancy-induced brain changes are permanent and encourage neuroimaging studies to routinely include pregnancy-related information as a relevant demographic variable.

8.
J Neurol ; 268(7): 2429-2440, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33507371

RESUMO

SPG4 is an autosomal dominant pure form of hereditary spastic paraplegia (HSP) caused by mutations in the SPAST gene. HSP is considered an upper motor neuron disorder characterized by progressive spasticity and weakness of the lower limbs caused by degeneration of the corticospinal tract. In other neurodegenerative motor disorders, the thalamus and basal ganglia are affected, with a considerable impact on disease progression. However, only a few works have studied these brain structures in HSP, mainly in complex forms of this disease. Our research aims to detect potential alterations in the volume and shape of the thalamus and various basal ganglia structures by comparing 12 patients with pure HSP and 18 healthy controls. We used two neuroimaging procedures: automated segmentation of the subcortical structures (thalamus, hippocampus, caudate nucleus, globus pallidus, and putamen) in native space and shape analysis of the structures. We found a significant reduction in thalamic volume bilaterally, as well as an inward deformation, mainly in the sensory-motor thalamic regions in patients with pure HSP and a mutation in SPG4. We also observed a significant negative correlation between the shape of the thalamus and clinical scores (the Spastic Paraplegia Rating Scale score and disease duration). Moreover, we found a 'Group × Age' interaction that was closely related to the severity of the disease. No differences in volume or in shape were found in the remaining subcortical structures studied. Our results suggest that changes in structure of the thalamus could be an imaging biomarker of disease progression in pHSP.


Assuntos
Paraplegia Espástica Hereditária , Atrofia , Gânglios da Base , Humanos , Mutação/genética , Paraplegia , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/genética , Espastina/genética
9.
J Am Acad Child Adolesc Psychiatry ; 59(3): 422-433, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31260788

RESUMO

OBJECTIVE: Impaired multisensory integration in autism spectrum disorder (ASD) may arise from functional dysconnectivity among brain systems. Our study examines the functional connectivity integration between primary modal sensory regions and heteromodal processing cortex in ASD, and whether abnormalities in network integration relate to clinical severity. METHOD: We studied a sample of 55 high-functioning ASD and 64 healthy control (HC) male children and adolescents (total n = 119, age range 7-18 years). Stepwise functional connectivity analysis (SFC) was applied to resting state functional magnetic resonance images (rsfMRI) to characterize the connectivity paths that link primary sensory cortices to higher-order brain cognitive functional circuits and to relate alterations in functional connectivity integration with three clinical scales: Social Communication Questionnaire, Social Responsiveness Scale, and Vineland Adaptive Behavior Scales. RESULTS: HC displayed typical functional connectivity transitions from primary sensory systems to association areas, but the ASD group showed altered patterns of multimodal sensory integration to heteromodal systems. Specifically, compared to the HC group, the ASD group showed the following: (1) hyperconnectivity in the visual cortex at initial link step distances; (2) hyperconnectivity between sensory unimodal regions and regions of the default mode network; and (3) hypoconnectivity between sensory unimodal regions and areas of the fronto-parietal and attentional networks. These patterns of hyper- and hypoconnectivity were associated with increased clinical severity in ASD. CONCLUSION: Networkwise reorganization in high-functioning ASD individuals affects strategic regions of unimodal-to-heteromodal cortical integration predicting clinical severity. In addition, SFC analysis appears to be a promising approach for studying the neural pathophysiology of multisensory integration deficits in ASD.


Assuntos
Transtorno do Espectro Autista , Adolescente , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Criança , Cognição , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais , Integração de Sistemas
10.
Hum Brain Mapp ; 40(16): 4645-4656, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31322305

RESUMO

Neuroimaging studies indicate that children with attention-deficit/hyperactivity disorder (ADHD) present alterations in several functional networks of the sensation-to-cognition spectrum. These alterations include functional overconnectivity within sensory regions and underconnectivity between sensory regions and neural hubs supporting higher order cognitive functions. Today, it is unknown whether this same pattern of alterations persists in adult patients with ADHD who had never been medicated for their condition. The aim of the present study was to assess whether medication-naïve adults with ADHD presented alterations in functional networks of the sensation-to-cognition spectrum. Thirty-one medication-naïve adults with ADHD and twenty-two healthy adults underwent resting-state functional magnetic resonance imaging (rs-fMRI). Stepwise functional connectivity (SFC) was used to characterize the pattern of functional connectivity between sensory seed regions and the rest of the brain at direct, short, intermediate, and long functional connectivity distances, thus covering the continuum from the sensory input to the neural hubs supporting higher order cognitive functions. As compared to controls, adults with ADHD presented increased SFC degree within primary sensory regions and decreased SFC degree between sensory seeds and higher order integration nodes. In addition, they exhibited decreased connectivity degree between sensory seeds and regions of the default-mode network. Consistently, the higher the score in clinical severity scales the lower connectivity degree between seed regions and the default mode network.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Sensação/fisiologia , Adulto , Mapeamento Encefálico , Função Executiva , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Escalas de Graduação Psiquiátrica , Adulto Jovem
11.
Hum Brain Mapp ; 40(7): 2143-2152, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30663172

RESUMO

Mapping the impact of pregnancy on the human brain is essential for understanding the neurobiology of maternal caregiving. Recently, we found that pregnancy leads to a long-lasting reduction in cerebral gray matter volume. However, the morphometric features behind the volumetric reductions remain unexplored. Furthermore, the similarity between these reductions and those occurring during adolescence, another hormonally similar transitional period of life, still needs to be investigated. Here, we used surface-based methods to analyze the longitudinal magnetic resonance imaging data of a group of 25 first-time mothers (before and after pregnancy) and compare them to those of a group of 25 female adolescents (during 2 years of pubertal development). For both first-time mothers and adolescent girls, a monthly rate of volumetric reductions of 0.09 mm3 was observed. In both cases, these reductions were accompanied by decreases in cortical thickness, surface area, local gyrification index, sulcal depth, and sulcal length, as well as increases in sulcal width. In fact, the changes associated with pregnancy did not differ from those that characterize the transition during adolescence in any of these measures. Our findings are consistent with the notion that the brain morphometric changes associated with pregnancy and adolescence reflect similar hormonally primed biological processes.


Assuntos
Adaptação Fisiológica/fisiologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Imageamento por Ressonância Magnética/tendências , Gravidez/fisiologia , Adolescente , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Tamanho do Órgão/fisiologia , Adulto Jovem
12.
Hum Brain Mapp ; 39(6): 2442-2454, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29473262

RESUMO

Previous studies have associated Attention-Deficit/Hyperactivity Disorder (ADHD) with a maturational lag of brain functional networks. Functional connectivity of the human brain changes from primarily local to more distant connectivity patterns during typical development. Under the maturational lag hypothesis, we expect children with ADHD to exhibit increased local connectivity and decreased distant connectivity compared with neurotypically developing (ND) children. We applied a graph-theory method to compute local and distant connectivity levels and cross-sectionally compared them in a sample of 120 children with ADHD and 120 age-matched ND children (age range = 7-17 years). In addition, we measured if potential group differences in local and distant connectivity were stable across the age range considered. Finally, we assessed the clinical relevance of observed group differences by correlating the connectivity levels and ADHD symptoms severity separately for each group. Children with ADHD exhibited more local connectivity than age-matched ND children in multiple brain regions, mainly overlapping with default mode, fronto-parietal and ventral attentional functional networks (p < .05- threshold free-cluster enhancement-family-wise error). We detected an atypical developmental pattern of local connectivity in somatomotor regions, that is, decreases with age in ND children, and increases with age in children with ADHD. Furthermore, local connectivity within somatomotor areas correlated positively with clinical severity of ADHD symptoms, both in ADHD and ND children. Results suggest an immature functional state of multiple brain networks in children with ADHD. Whereas the ADHD diagnosis is associated with the integrity of the system comprising the fronto-parietal, default mode and ventral attentional networks, the severity of clinical symptoms is related to atypical functional connectivity within somatomotor areas. Additionally, our findings are in line with the view of ADHD as a disorder of deviated maturational trajectories, mainly affecting somatomotor areas, rather than delays that normalize with age.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/patologia , Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Adolescente , Estudos de Casos e Controles , Criança , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Escalas de Graduação Psiquiátrica , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA