Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Funct Biomater ; 15(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38391902

RESUMO

Human platelet lysate (HPL), rich in growth factors, is increasingly recognized for its potential in tissue engineering and regenerative medicine. However, its use in liquid or gel form is constrained by limited stability and handling difficulties. This study aimed to develop dry and porous aerogels from HPL hydrogel using an environmentally friendly supercritical CO2-based shaping process, specifically tailored for tissue engineering applications. The aerogels produced retained their three-dimensional structure and demonstrated significant mechanical robustness and enhanced manageability. Impressively, they exhibited high water absorption capacity, absorbing 87% of their weight in water within 120 min. Furthermore, the growth factors released by these aerogels showed a sustained and favourable biological response in vitro. They maintained the cellular metabolic activity of fibroblasts (BALB-3T3) at levels akin to conventional culture conditions, even after prolonged storage, and facilitated the migration of human umbilical vein endothelial cells (HUVECs). Additionally, the aerogels themselves supported the adhesion and proliferation of murine fibroblasts (BALB-3T3). Beyond serving as excellent matrices for cell culture, these aerogels function as efficient systems for the delivery of growth factors. Their multifunctional capabilities position them as promising candidates for various tissue regeneration strategies. Importantly, the developed aerogels can be stored conveniently and are considered ready to use, enhancing their practicality and applicability in regenerative medicine.

2.
Bioengineering (Basel) ; 10(9)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37760147

RESUMO

Hydrogels (gels) are attractive tools for tissue engineering and regenerative medicine due to their potential for drug delivery and ECM-like composition. In this study, we use rheology to characterize GelMA/alginate gels loaded with human platelet lysate (PL). We then characterize these gels from a physicochemical perspective and evaluate their ability to transport PL proteins, their pore size, and their rate of degradation. Finally, their biocompatibility is evaluated. We describe how alginate changes the mechanical behavior of the gels from elastic to viscoelastic after ionic (calcium-mediated) crosslinking. In addition, we report the release of ~90% of PL proteins from the gels and relate it to the degradation profile of the gels. Finally, we evaluated the biocompatibility of the gels. Thus, the developed gels represent attractive substrates for both cell studies and as bioactive materials.

3.
Biomacromolecules ; 22(7): 2902-2909, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34161074

RESUMO

Strain hardening has recently emerged as a near-universal response of biological tissues to mechanical stimulation as well as a powerful regulator of cell fate. Understanding the mechanistic basis for this nonlinear elasticity is crucial for developing bioinspired materials that mimic extracellular matrix mechanics. Here, we show that covalent networks built from highly acetylated chitosans exhibit strain hardening at physiological pH and osmolarity. While varying the chitosan physical-chemical composition and network connectivity, we provide evidence that temporary nodes arising from the entangling of chains between stable cross-links are at the root of nonlinear elasticity. The contour length (Lc) of the said chains revealed that the larger the chain length between the cross-links, the greater is the entanglement over disentanglement upon network stretching. To this end, we calculated that the minimum number of Khun's segments in Lc that contributes to the onset of strain hardening is 15. Furthermore, we identified a relationship between critical strain marking nonlinear elasticity and the network connectivity, being similar to that found for the cytoskeletal collagen matrix, indicating the potential use of semiflexible (neutral pH-soluble) chitosans in assembling extracellular matrix mimics.


Assuntos
Quitosana , Colágeno , Elasticidade , Matriz Extracelular , Géis , Estresse Mecânico
4.
Macromol Biosci ; 20(12): e2000236, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32975019

RESUMO

Mounting evidences have recognized that dual cross-link and double-network gels can promisingly recapitulate the complex living tissue architecture and overcome mechanical limitations of conventional scaffolds used hitherto in regenerative medicine. Here, dual cross-link gels formed of a bioactive lactose-modified chitosan reticulated via both temporary (boric acid-based) and permanent (genipin-based) cross-linkers are reported. While boric acid rapidly binds to lactitol flanking diols increasing the overall viscosity, a slow temperature-driven genipin binding process takes place allowing for network strengthening. Combination of frequency and stress sweep experiments in the linear stress-strain region shows that ultimate gel strength, toughness, and viscoelasticity depend on polymer-to-genipin molar ratio. Notably, herewith it is demonstrated that linear stretching correlates with strain energy dissipation through boric acid binding/unbinding dynamics. Strain-hardening effect in the nonlinear regime, along with good biocompatibility in vitro, points at an interesting role of present system as biological extracellular matrix substitute.


Assuntos
Materiais Biocompatíveis/química , Quitosana/química , Lactose/química , Materiais Biocompatíveis/farmacologia , Ácidos Bóricos/química , Quitosana/farmacologia , Géis/química , Géis/farmacologia , Humanos , Iridoides/química , Iridoides/farmacologia , Lactose/farmacologia , Medicina Regenerativa , Estresse Mecânico , Viscosidade/efeitos dos fármacos
5.
Molecules ; 25(7)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230971

RESUMO

Chitosan derivatives, and more specifically, glycosylated derivatives, are nowadays attracting much attention within the scientific community due to the fact that this set of engineered polysaccharides finds application in different sectors, spanning from food to the biomedical field. Overcoming chitosan (physical) limitations or grafting biological relevant molecules, to mention a few, represent two cardinal strategies to modify parent biopolymer; thereby, synthetizing high added value polysaccharides. The present review is focused on the introduction of oligosaccharide side chains on the backbone of chitosan. The synthetic aspects and the effect on physical-chemical properties of such modifications are discussed. Finally, examples of potential applications in biomaterials design and drug delivery of these novel modified chitosans are disclosed.


Assuntos
Materiais Biocompatíveis/química , Quitosana/química , Sistemas de Liberação de Medicamentos/métodos , Oligossacarídeos/química , Engenharia Tecidual/métodos , Animais , Quitosana/análogos & derivados , Quitosana/síntese química , Glicosilação , Humanos , Simulação de Dinâmica Molecular , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA