Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
JACC Cardiovasc Imaging ; 16(9): 1209-1223, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37480904

RESUMO

Artificial intelligence (AI) promises to revolutionize many fields, but its clinical implementation in cardiovascular imaging is still rare despite increasing research. We sought to facilitate discussion across several fields and across the lifecycle of research, development, validation, and implementation to identify challenges and opportunities to further translation of AI in cardiovascular imaging. Furthermore, it seemed apparent that a multidisciplinary effort across institutions would be essential to overcome these challenges. This paper summarizes the proceedings of the National Heart, Lung, and Blood Institute-led workshop, creating consensus around needs and opportunities for institutions at several levels to support and advance research in this field and support future translation.


Assuntos
Inteligência Artificial , Sistema Cardiovascular , Estados Unidos , Humanos , National Heart, Lung, and Blood Institute (U.S.) , Valor Preditivo dos Testes , Assistência ao Paciente
3.
Front Med (Lausanne) ; 5: 241, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356350

RESUMO

Protecting and promoting public health is the mission of the U.S. Food and Drug Administration (FDA). FDA's Center for Devices and Radiological Health (CDRH), which regulates medical devices marketed in the U.S., envisions itself as the world's leader in medical device innovation and regulatory science-the development of new methods, standards, and approaches to assess the safety, efficacy, quality, and performance of medical devices. Traditionally, bench testing, animal studies, and clinical trials have been the main sources of evidence for getting medical devices on the market in the U.S. In recent years, however, computational modeling has become an increasingly powerful tool for evaluating medical devices, complementing bench, animal and clinical methods. Moreover, computational modeling methods are increasingly being used within software platforms, serving as clinical decision support tools, and are being embedded in medical devices. Because of its reach and huge potential, computational modeling has been identified as a priority by CDRH, and indeed by FDA's leadership. Therefore, the Office of Science and Engineering Laboratories (OSEL)-the research arm of CDRH-has committed significant resources to transforming computational modeling from a valuable scientific tool to a valuable regulatory tool, and developing mechanisms to rely more on digital evidence in place of other evidence. This article introduces the role of computational modeling for medical devices, describes OSEL's ongoing research, and overviews how evidence from computational modeling (i.e., digital evidence) has been used in regulatory submissions by industry to CDRH in recent years. It concludes by discussing the potential future role for computational modeling and digital evidence in medical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA