Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Front Plant Sci ; 13: 970865, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340396

RESUMO

Frost is a major abiotic stress of winter type faba beans (Vica faba L.) and has adverse effects on crop yield. Climate change, far from reducing the incidence of frost events, is making these phenomena more and more common, severe, and prolonged. Despite the important interaction that the environment has in the tolerance of faba bean to frost, this trait seems to have good levels of heritability. Several QTLs for frost tolerance have already been reported, however, a more robust identification is needed to more precisely identify the genomic regions involved in faba bean tolerance to sub-zero temperatures. Several pea (Pisum sativum L.) and barrel medic (Medicago truncatula L.) frost tolerance QTLs appear to be conserved between these two species, furthering the hypothesis that the genetic control of frost tolerance in legume species might be more generally conserved. In this work, the QTL mapping in two faba bean recombinant inbred line (RIL) populations connected by a common winter-type parent has led to the identification of five genomic regions involved in the control of frost tolerance on linkage groups I, III, IV, and V. Among them, a major and robust QTL of great interest for marker-assisted selection was identified on the lower part of the long-arm of LGI. The synteny between the faba bean frost tolerance QTLs and those previously identified in other legume species such as barrel medic, pea or soybean highlighted at least partial conservation of the genetic control of frost tolerance among different faba bean genetic pools and legume species. Four novel RILs showing high and stable levels of tolerance and the ability to recover from freezing temperatures by accumulating frost tolerance QTLs are now available for breeding programs.

2.
Sci Rep ; 10(1): 15925, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985526

RESUMO

Pea is one of the most important grain legume crops in temperate regions worldwide. Improving pea yield is a critical breeding target. Nine inter-connected pea recombinant inbred line populations were evaluated in nine environments at INRAE Dijon, France and genotyped using the GenoPea 13.2 K SNP array. Each population has been evaluated in two to four environments. A multi-population Quantitative Trait Loci (QTL) analysis for seed weight per plant (SW), seed number per plant (SN), thousand seed weight (TSW) and seed protein content (SPC) was done. QTL were then projected on the multi-population consensus map and a meta-analysis of QTL was performed. This analysis identified 17 QTL for SW, 16 QTL for SN, 35 QTL for TSW and 21 QTL for SPC, shedding light on trait relationships. These QTL were resolved into 27 metaQTL. Some of them showed small confidence intervals of less than 2 cM encompassing less than one hundred underlying candidate genes. The precision of metaQTL and the potential candidate genes reported in this study enable their use for marker-assisted selection and provide a foundation towards map-based identification of causal polymorphisms.


Assuntos
Pisum sativum/genética , Proteínas de Plantas/genética , Locos de Características Quantitativas , Sementes/genética , Mapeamento Cromossômico , Ligação Genética , Genótipo , Pisum sativum/metabolismo , Fenótipo , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Sementes/metabolismo
4.
Front Plant Sci ; 9: 1914, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687341

RESUMO

Seed weevils (Bruchus spp.) are major pests of faba bean, causing yield losses, and affecting marketability. Our objective was to identify stable sources of resistance to seed weevil attacks, determine the climatic factors that most influenced its incidence and its relationship with some phenological and agronomic traits. The accessions "BOBICK ROD115," "CÔTE D'OR," "221516," and "NOVA GRADISKA" showed increased resistance to penetration and development of larvae. Other accessions such as "QUASAR," "109.669," and "223303" exhibited resistance to larval development. The results of this work suggest the presence of different defense mechanisms to seed weevils in faba bean, which in the future could be introgressed in elite cultivars to create resistant varieties and contribute to more sustainable agriculture with less need for pesticides. The temperature, rainfall, and humidity seemed to be the climatic factors most influencing faba bean seed weevil attack while the precocity and the small weight of the seeds were correlated with lower infestation rates in the different experiments.

5.
Front Plant Sci ; 8: 842, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28588599

RESUMO

Certain amino acids induce inhibitory effects in plant growth due to feedback inhibition of metabolic pathways. The inhibition patterns depend on plant species and the plant developmental stage. Those amino acids with inhibitory action on specific weeds could be utilized as herbicides, however, their use for weed control has not been put into practice. Orobanche minor is a weed that parasitizes red clover. O. minor germination is stimulated by clover root exudates. The subsequent seedling is an obligated parasite that must attach quickly to the clover root to withdraw its nutrients. Early development of O. minor is vulnerable to amino acid inhibition and therefore, a series of in vitro, rhizotron, and field experiments were conducted to investigate the potential of amino acids to inhibit O. minor parasitism. In in vitro experiments it was found that among a collection of 20 protein amino acids, lysine, methionine and tryptophan strongly interfere with O. minor early development. Field research confirmed their inhibitory effect but revealed that methionine was more effective than lysine and tryptophan, and that two successive methionine applications at 308 and 543 growing degree days inhibited O. minor emergence in red clover up to 67%. We investigated additional effects with potential to influence the practical use of amino acids against broomrape weeds, whether the herbicidal effect may be reversible by other amino acids exuded by host plants or may be amplified by inducing host resistance barriers against O. minor penetration. This paper suggests that amino acids may have the potential to be integrated into biorational programs of broomrape management.

6.
Front Plant Sci ; 6: 941, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635819

RESUMO

Pea is an important food and feed crop and a valuable component of low-input farming systems. Improving resistance to biotic and abiotic stresses is a major breeding target to enhance yield potential and regularity. Genomic selection (GS) has lately emerged as a promising technique to increase the accuracy and gain of marker-based selection. It uses genome-wide molecular marker data to predict the breeding values of candidate lines to selection. A collection of 339 genetic resource accessions (CRB339) was subjected to high-density genotyping using the GenoPea 13.2K SNP Array. Genomic prediction accuracy was evaluated for thousand seed weight (TSW), the number of seeds per plant (NSeed), and the date of flowering (BegFlo). Mean cross-environment prediction accuracies reached 0.83 for TSW, 0.68 for NSeed, and 0.65 for BegFlo. For each trait, the statistical method, the marker density, and/or the training population size and composition used for prediction were varied to investigate their effects on prediction accuracy: the effect was large for the size and composition of the training population but limited for the statistical method and marker density. Maximizing the relatedness between individuals in the training and test sets, through the CDmean-based method, significantly improved prediction accuracies. A cross-population cross-validation experiment was further conducted using the CRB339 collection as a training population set and nine recombinant inbred lines populations as test set. Prediction quality was high with mean Q (2) of 0.44 for TSW and 0.59 for BegFlo. Results are discussed in the light of current efforts to develop GS strategies in pea.

7.
Plant J ; 84(6): 1257-73, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26590015

RESUMO

Single nucleotide polymorphism (SNP) arrays represent important genotyping tools for innovative strategies in both basic research and applied breeding. Pea is an important food, feed and sustainable crop with a large (about 4.45 Gbp) but not yet available genome sequence. In the present study, 12 pea recombinant inbred line populations were genotyped using the newly developed GenoPea 13.2K SNP Array. Individual and consensus genetic maps were built providing insights into the structure and organization of the pea genome. Largely collinear genetic maps of 3918-8503 SNPs were obtained from all mapping populations, and only two of these exhibited putative chromosomal rearrangement signatures. Similar distortion patterns in different populations were noted. A total of 12 802 transcript-derived SNP markers placed on a 15 079-marker high-density, high-resolution consensus map allowed the identification of ohnologue-rich regions within the pea genome and the localization of local duplicates. Dense syntenic networks with sequenced legume genomes were further established, paving the way for the identification of the molecular bases of important agronomic traits segregating in the mapping populations. The information gained on the structure and organization of the genome from this research will undoubtedly contribute to the understanding of the evolution of the pea genome and to its assembly. The GenoPea 13.2K SNP Array and individual and consensus genetic maps are valuable genomic tools for plant scientists to strengthen pea as a model for genetics and physiology and enhance breeding.


Assuntos
Cromossomos de Plantas/genética , Pisum sativum/genética , Mapeamento Cromossômico , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genômica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Transcriptoma
8.
Theor Appl Genet ; 127(6): 1319-30, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24695842

RESUMO

KEY MESSAGE: Avoidance mechanisms and intrinsic resistance are complementary strategies to improve winter frost tolerance and yield potential in field pea. The development of the winter pea crop represents a major challenge to expand plant protein production in temperate areas. Breeding winter cultivars requires the combination of freezing tolerance as well as high seed productivity and quality. In this context, we investigated the genetic determinism of winter frost tolerance and assessed its genetic relationship with yield and developmental traits. Using a newly identified source of frost resistance, we developed a population of recombinant inbred lines and evaluated it in six environments in Dijon and Clermont-Ferrand between 2005 and 2010. We developed a genetic map comprising 679 markers distributed over seven linkage groups and covering 947.1 cM. One hundred sixty-one quantitative trait loci (QTL) explaining 9-71 % of the phenotypic variation were detected across the six environments for all traits measured. Two clusters of QTL mapped on the linkage groups III and one cluster on LGVI reveal the genetic links between phenology, morphology, yield-related traits and frost tolerance in winter pea. QTL clusters on LGIII highlighted major developmental gene loci (Hr and Le) and the QTL cluster on LGVI explained up to 71 % of the winter frost damage variation. This suggests that a specific architecture and flowering ideotype defines frost tolerance in winter pea. However, two consistent frost tolerance QTL on LGV were independent of phenology and morphology traits, showing that different protective mechanisms are involved in frost tolerance. Finally, these results suggest that frost tolerance can be bred independently to seed productivity and quality.


Assuntos
Congelamento , Pisum sativum/genética , Locos de Características Quantitativas , Estresse Fisiológico/genética , Pisum sativum/fisiologia , Fenótipo , Análise de Componente Principal
9.
Proteomics ; 11(9): 1581-94, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21433288

RESUMO

Legume seeds are a major source of dietary proteins for humans and animals. Deciphering the genetic control of their accumulation is thus of primary significance towards their improvement. At first, we analysed the genetic variability of the pea seed proteome of three genotypes over 3 years of cultivation. This revealed that seed protein composition variability was under predominant genetic control, with as much as 60% of the spots varying quantitatively among the three genotypes. Then, by combining proteomic and quantitative trait loci (QTL) mapping approaches, we uncovered the genetic architecture of seed proteome variability. Protein quantity loci (PQL) were searched for 525 spots detected on 2-D gels obtained for 157 recombinant inbred lines. Most protein quantity loci mapped in clusters, suggesting that the accumulation of the major storage protein families was under the control of a limited number of loci. While convicilin accumulation was mainly under the control of cis-regulatory regions, vicilins and legumins were controlled by both cis- and trans-regulatory regions. Some loci controlled both seed protein composition and protein content and a locus on LGIIa appears to be a major regulator of protein composition and of protein in vitro digestibility.


Assuntos
Pisum sativum/metabolismo , Proteínas de Plantas/análise , Proteômica/métodos , Locos de Características Quantitativas , Sementes/metabolismo , Análise de Variância , Animais , Cromatografia Líquida , Mapeamento Cromossômico , Proteínas Alimentares/análise , Proteínas Alimentares/metabolismo , Ecossistema , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica de Plantas , Genótipo , Humanos , Endogamia , Pisum sativum/genética , Pisum sativum/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Componente Principal , Sequências Reguladoras de Ácido Nucleico/genética , Proteínas de Armazenamento de Sementes/análise , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/genética , Espectroscopia de Luz Próxima ao Infravermelho , Leguminas
10.
G3 (Bethesda) ; 1(2): 93-103, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22384322

RESUMO

To identify genes involved in phenotypic traits, translational genomics from highly characterized model plants to poorly characterized crop plants provides a valuable source of markers to saturate a zone of interest as well as functionally characterized candidate genes. In this paper, an integrated view of the pea genetic map was developed. A series of gene markers were mapped and their best reciprocal homologs were identified on M. truncatula, L. japonicus, soybean, and poplar pseudomolecules. Based on the syntenic relationships uncovered between pea and M. truncatula, 5460 pea Unigenes were tentatively placed on the consensus map. A new bioinformatics tool, http://www.thelegumeportal.net/pea_mtr_translational_toolkit, was developed that allows, for any gene sequence, to search its putative position on the pea consensus map and hence to search for candidate genes among neighboring Unigenes. As an example, a promising candidate gene for the hypernodulation mutation nod3 in pea was proposed based on the map position of the likely homolog of Pub1, a M. truncatula gene involved in nodulation regulation. A broader view of pea genome evolution was obtained by revealing syntenic relationships between pea and sequenced genomes. Blocks of synteny were identified which gave new insights into the evolution of chromosome structure in Papillionoids and Eudicots. The power of the translational genomics approach was underlined.

11.
Theor Appl Genet ; 121(1): 71-86, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20180092

RESUMO

Pea (Pisum sativum L.) is the third most important grain legume worldwide, and the increasing demand for protein-rich raw material has led to a great interest in this crop as a protein source. Seed yield and protein content in crops are strongly determined by nitrogen (N) nutrition, which in legumes relies on two complementary pathways: absorption by roots of soil mineral nitrogen, and fixation in nodules of atmospheric dinitrogen through the plant-Rhizobium symbiosis. This study assessed the potential of naturally occurring genetic variability of nodulated root structure and functioning traits to improve N nutrition in pea. Glasshouse and field experiments were performed on seven pea genotypes and on the 'Cameor' x 'Ballet' population of recombinant inbred lines selected on the basis of parental contrast for root and nodule traits. Significant variation was observed for most traits, which were obtained from non-destructive kinetic measurements of nodulated root and shoot in pouches, root and shoot image analysis, (15)N quantification, or seed yield and protein content determination. A significant positive relationship was found between nodule establishment and root system growth, both among the seven genotypes and the RIL population. Moreover, several quantitative trait loci for root or nodule traits and seed N accumulation were mapped in similar locations, highlighting the possibility of breeding new pea cultivars with increased root system size, sustained nodule number, and improved N nutrition. The impact on both root or nodule traits and N nutrition of the genomic regions of the major developmental genes Le and Af was also underlined.


Assuntos
Nitrogênio/metabolismo , Pisum sativum , Raízes de Plantas , Brotos de Planta , Locos de Características Quantitativas , Nódulos Radiculares de Plantas , Genes de Plantas , Variação Genética , Genótipo , Fixação de Nitrogênio/fisiologia , Pisum sativum/anatomia & histologia , Pisum sativum/genética , Pisum sativum/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Nódulos Radiculares de Plantas/anatomia & histologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo
12.
Plant Physiol ; 144(2): 768-81, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17449650

RESUMO

Increasing pea (Pisum sativum) seed nutritional value and particularly seed protein content, while maintaining yield, is an important challenge for further development of this crop. Seed protein content and yield are complex and unstable traits, integrating all the processes occurring during the plant life cycle. During filling, seeds are the main sink to which assimilates are preferentially allocated at the expense of vegetative organs. Nitrogen seed demand is satisfied partly by nitrogen acquired by the roots, but also by nitrogen remobilized from vegetative organs. In this study, we evaluated the respective roles of nitrogen source capacity and sink strength in the genetic variability of seed protein content and yield. We showed in eight genotypes of diverse origins that both the maximal rate of nitrogen accumulation in the seeds and nitrogen source capacity varied among genotypes. Then, to identify the genetic factors responsible for seed protein content and yield variation, we searched for quantitative trait loci (QTL) for seed traits and for indicators of sink strength and source nitrogen capacity. We detected 261 QTL across five environments for all traits measured. Most QTL for seed and plant traits mapped in clusters, raising the possibility of common underlying processes and candidate genes. In most environments, the genes Le and Afila, which control internode length and the switch between leaflets and tendrils, respectively, determined plant nitrogen status. Depending on the environment, these genes were linked to QTL of seed protein content and yield, suggesting that source-sink adjustments depend on growing conditions.


Assuntos
Biomassa , Nitrogênio/metabolismo , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Genes de Plantas , Variação Genética , Genótipo , Hibridização Genética , Pisum sativum/genética , Pisum sativum/crescimento & desenvolvimento , Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA