Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 376(2118)2018 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-29555806

RESUMO

The applicability of Navier-Stokes equations is limited to near-equilibrium flows in which the gradients of density, velocity and energy are small. Here I propose an extension of the Chapman-Enskog approximation in which the velocity probability distribution function (PDF) is averaged in the coordinate phase space as well as the velocity phase space. I derive a PDF that depends on the gradients and represents a first-order generalization of local thermodynamic equilibrium. I then integrate this PDF to derive a hydrodynamic model. I discuss the properties of that model and its relation to the discrete equations of computational fluid dynamics.This article is part of the theme issue 'Hilbert's sixth problem'.

2.
Philos Trans A Math Phys Eng Sci ; 367(1899): 2861-71, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19531508

RESUMO

Finite-scale equations (FSE) describe the evolution of finite volumes of fluid over time. We discuss the FSE for a one-dimensional compressible fluid, whose every point is governed by the Navier-Stokes equations. The FSE contain new momentum and internal energy transport terms. These are similar to terms added in numerical simulation for high-speed flows (e.g. artificial viscosity) and for turbulent flows (e.g. subgrid scale models). These similarities suggest that the FSE may provide new insight as a basis for computational fluid dynamics. Our analysis of the FS continuity equation leads to a physical interpretation of the new transport terms, and indicates the need to carefully distinguish between volume-averaged and mass-averaged velocities in numerical simulation. We make preliminary connections to the other recent work reformulating Navier-Stokes equations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA