Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Arch Pathol Lab Med ; 147(3): 338-347, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35771716

RESUMO

CONTEXT.­: Multiple procedural techniques can be used to obtain tissue to create a formalin-fixed, paraffin-embedded specimen for comprehensive genomic profiling (CGP) in lung cancer. The literature is mixed on whether the procedure affects CGP success. OBJECTIVE.­: To examine whether biopsy procedure affects lung cancer CGP success. DESIGN.­: This was a cross-sectional study of all patients with lung cancer whose specimens were submitted for CGP between January and February 2020. Multiple quality control metrics were used to determine whether cases were successfully profiled. RESULTS.­: In all, 3312 samples were identified. Overall, 67.5% (2236 of 3312) of samples were obtained from biopsies, 13.0% (432 of 3312) from fine-needle aspirations (FNAs), 9.7% (321 of 3312) from resections, 5.3% (174 of 3312) from fluid cytology cell blocks, and 4.5% (149 of 3312) from bone biopsies. Overall, 70.1% (2321 of 3312) of cases passed CGP, 15.4% (510 of 3312) of cases were released as qualified reports, and 14.5% (481 of 3312) of cases failed CGP. Resection samples were the most likely to be successfully sequenced, failing in only 2.8% (9 of 321) of instances, while fluid cytology specimens were the least likely, failing in 23.0% (40 of 174) of instances. Biopsy (14.5% [324 of 2236]), FNA (18.5% [80 of 432]), and bone biopsy (18.8% [28 of 149]) specimens failed at intermediate frequencies. On multivariate logistic regression analysis of CGP success on specimen type, fluid cytology (odds ratio [OR], 0.08; 95% CI, 0.03-0.19), biopsy (OR, 0.25; 95% CI, 0.11-0.52), FNA (OR, 0.14; 95% CI, 0.06-0.32), and bone biopsy (OR, 0.07; 95% CI, 0.03-0.17) specimens had decreased odds of CGP success relative to resection samples. Among patients with successfully sequenced samples, 48.0% were eligible for at least 1 therapy, based on a companion diagnostic or National Comprehensive Cancer Network biomarker. CONCLUSIONS.­: The method of tissue acquisition was an important preanalytic factor that determined whether a sample would be successfully sequenced and whether a clinically actionable genomic alteration would be detected.


Assuntos
Neoplasias Pulmonares , Humanos , Estudos Transversais , Neoplasias Pulmonares/diagnóstico , Biópsia por Agulha Fina , Genômica , Citodiagnóstico
2.
Cancer Discov ; 12(12): 2800-2819, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36108156

RESUMO

Neuroblastoma evolution, heterogeneity, and resistance remain inadequately defined, suggesting a role for circulating tumor DNA (ctDNA) sequencing. To define the utility of ctDNA profiling in neuroblastoma, 167 blood samples from 48 high-risk patients were evaluated for ctDNA using comprehensive genomic profiling. At least one pathogenic genomic alteration was identified in 56% of samples and 73% of evaluable patients, including clinically actionable ALK and RAS-MAPK pathway variants. Fifteen patients received ALK inhibition (ALKi), and ctDNA data revealed dynamic genomic evolution under ALKi therapeutic pressure. Serial ctDNA profiling detected disease evolution in 15 of 16 patients with a recurrently identified variant-in some cases confirming disease progression prior to standard surveillance methods. Finally, ctDNA-defined ERRFI1 loss-of-function variants were validated in neuroblastoma cellular models, with the mutant proteins exhibiting loss of wild-type ERRFI1's tumor-suppressive functions. Taken together, ctDNA is prevalent in children with high-risk neuroblastoma and should be followed throughout neuroblastoma treatment. SIGNIFICANCE: ctDNA is prevalent in children with neuroblastoma. Serial ctDNA profiling in patients with neuroblastoma improves the detection of potentially clinically actionable and functionally relevant variants in cancer driver genes and delineates dynamic tumor evolution and disease progression beyond that of standard tumor sequencing and clinical surveillance practices. See related commentary by Deubzer et al., p. 2727. This article is highlighted in the In This Issue feature, p. 2711.


Assuntos
DNA Tumoral Circulante , Neuroblastoma , Criança , Humanos , DNA Tumoral Circulante/genética , Mutação , Genômica/métodos , Neuroblastoma/genética , Progressão da Doença , Receptores Proteína Tirosina Quinases/genética , Biomarcadores Tumorais/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA