Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 20(36): 7199-7213, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39222025

RESUMO

We introduce a theoretical framework to describe the pH-sensitive phase behavior of polyzwitterion-polyelectrolyte complex coacervates that reasonably captures the phenomenon from recent experimental observations. The polyzwitterion is described by a combinatorial sequence of the four states in which each zwitterionic monomer can occupy: dipolar, quasi-cationic, quasi-anionic, and fully neutralized. We explore the effects of various modifiable chemical and physical properties of the polymers-such as, pKa of the pH-active charged group on the zwitterion, equilibrium constant of salt condensation on the permanently charged group on the zwitterion, degrees of polymerization, hydrophobicity (via the Flory-Huggins interaction parameter), and dipole lengths-on the window of complexation across many stoichiometric mixing ratios of polyzwitterion and polyelectrolyte. The properties that determine the net charge of the polyzwitterion have the strongest effect on the pH range in which polyzwitterion-polyelectrolyte complexation occurs. We finish with general guidance for those interested in molecular design of polyzwitterion-polyelectrolyte complex coacervates and opportunities for future investigation.

2.
Nat Commun ; 13(1): 2250, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35474060

RESUMO

Traditionally, complex coacervation is regarded as a process whereby two oppositely charged polyelectrolytes self-assemble into spherical droplets. Here, we introduce the polyzwitterionic complex, "pZC", formed by the liquid-liquid phase separation of a polyzwitterion and a polyelectrolyte, and elucidate a mechanism by which such complexes can assemble using theory and experimental evidence. This system exhibits orthogonal phase behavior-it remains intact in acidic conditions, but disassembles as the pH increases, a process governed by the acid-base equilibria of the constituent chains. We relate the observed phase behavior to physiological conditions within the gastrointestinal tract with a simulation of the gastroduodenal junction, and demonstrate using video microscopy the viability of polyzwitterionic coacervates as technologies for the pH-triggered release of cargo. Such a system is envisaged to tackle imminent problems of drug transport via the oral route and serve as a packaging solution to increase uptake efficiency.


Assuntos
Polieletrólitos , Polieletrólitos/química
3.
Macromol Rapid Commun ; 43(12): e2100678, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34962321

RESUMO

Polymer zwitterions continue to emerge as useful materials for numerous applications, ranging from hydrophilic and antifouling coatings to electronic materials interfaces. While several polymer zwitterion compositions are now well established, interest in this field of soft materials science has grown rapidly in recent years due to the introduction of new structures that diversify their chemistry and architecture. Nonetheless, at present, the variation of the chemical composition of the anionic and cationic components of zwitterionic structures remains relatively limited to a few primary examples. In this article, the versatility of 4-vinylbenzyl sultone as a precursor to ammonium sulfonate zwitterionic monomers, which are then used in controlled free radical polymerization chemistry to afford "inverted sulfobetaine" polymer zwitterions, is highlighted. An evaluation of the solubility, interfacial activity, and solution configuration of the resultant polymers reveals the dependence of properties on the selection of tertiary amines used for nucleophilic ring-opening of the sultone precursor, as well as useful properties comparisons across different zwitterionic compositions.


Assuntos
Compostos de Amônio , Polímeros , Cátions , Interações Hidrofóbicas e Hidrofílicas , Polimerização , Polímeros/química
4.
Angew Chem Int Ed Engl ; 54(38): 11128-32, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26352023

RESUMO

Reported is the ability of α-helical polypeptides to self-assemble with oppositely-charged polypeptides to form liquid complexes while maintaining their α-helical secondary structure. Coupling the α-helical polypeptide to a neutral, hydrophilic polymer and subsequent complexation enables the formation of nanoscale coacervate-core micelles. While previous reports on polypeptide complexation demonstrated a critical dependence of the nature of the complex (liquid versus solid) on chirality, the α-helical structure of the positively charged polypeptide prevents the formation of ß-sheets, which would otherwise drive the assembly into a solid state, thereby, enabling coacervate formation between two chiral components. The higher charge density of the assembly, a result of the folding of the α-helical polypeptide, provides enhanced resistance to salts known to inhibit polypeptide complexation. The unique combination of properties of these materials can enhance the known potential of fluid polypeptide complexes for delivery of biologically relevant molecules.


Assuntos
Peptídeos/química , Dicroísmo Circular , Microscopia Eletrônica de Transmissão , Polímeros/química , Conformação Proteica
5.
Nat Commun ; 6: 6052, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25586861

RESUMO

Polyelectrolyte complexes present new opportunities for self-assembled soft matter. Factors determining whether the phase of the complex is solid or liquid remain unclear. Ionic polypeptides enable examination of the effects of stereochemistry on complex formation. Here we demonstrate that chirality determines the state of polyelectrolyte complexes, formed from mixing dilute solutions of oppositely charged polypeptides, via a combination of electrostatic and hydrogen-bonding interactions. Fluid complexes occur when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen-bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with a ß-sheet structure. Analogous behaviour occurs in micelles formed from polypeptide block copolymers with polyethylene oxide, where assembly into aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in polyelectrolyte complexation.


Assuntos
Peptídeos/química , Polímeros/química , Ligação de Hidrogênio , Estrutura Secundária de Proteína , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA