Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cells ; 13(17)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39273061

RESUMO

Zika virus (ZIKV) is an arbovirus with maternal, sexual, and TORCH-related transmission capabilities. After 2015, Brazil had the highest number of ZIVK-infected pregnant women who lost their babies or delivered them with Congenital ZIKV Syndrome (CZS). ZIKV triggers an immune defense in the placenta. This immune response counts with the participation of interleukins and transcription factors. Additionally, it has the potential involvement of human endogenous retroviruses (HERVS). Interleukins are immune response regulators that aid immune tolerance and support syncytial structure development in the placenta, where syncytin receptors facilitate vital cell-to-cell fusion events. HERVs are remnants of ancient viral infections that integrate into the genome and produce syncytin proteins crucial for placental development. Since ZIKV can infect trophoblast cells, we analyzed the relationship between ZIKV infection, HERV, interleukin, and transcription factor modulations in the placenta. To investigate the impact of ZIKV on trophoblast cells, we examined two cell types (BeWo and HTR8) infected with ZIKV-MR766 (African) and ZIKV-IEC-Paraíba (Asian-Brazilian) using Taqman and RT2 Profiler PCR Array assays. Our results indicate that early ZIKV infection (24-72 h) does not induce differential interleukins, transcription factors, and HERV expression. However, we show that the expression of a few of these host defense genes appears to be linked independently of ZIKV infection. Future studies involving additional trophoblastic cell lineages and extended infection timelines will illuminate the dynamic interplay between ZIKV, HERVs, interleukins, and transcription factors in the placenta.


Assuntos
Retrovirus Endógenos , Interleucinas , Fatores de Transcrição , Trofoblastos , Infecção por Zika virus , Zika virus , Humanos , Trofoblastos/virologia , Trofoblastos/metabolismo , Feminino , Infecção por Zika virus/virologia , Infecção por Zika virus/genética , Retrovirus Endógenos/genética , Gravidez , Interleucinas/genética , Interleucinas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Placenta/virologia , Placenta/metabolismo , Linhagem Celular
2.
Immun Inflamm Dis ; 12(7): e1353, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39056544

RESUMO

BACKGROUND: SARS-CoV2 virus, responsible for the COVID-19 pandemic, has four structural proteins and 16 nonstructural proteins. S-protein is one of the structural proteins exposed on the virus surface and is the main target for producing neutralizing antibodies and vaccines. The S-protein forms a trimer that can bind the angiotensin-converting enzyme 2 (ACE2) through its receptor binding domain (RBD) for cell entry. AIMS: The goal of this study was to express in HEK293 cells a new RBD recombinant protein in a constitutive and stable manner in order to use it as an alternative immunogen and diagnostic tool for COVID-19. MATERIALS & METHODS: The protein was designed to contain an immunoglobulin signal sequence, an explanded C-terminal section of the RBD, a region responsible for the bacteriophage T4 trimerization inducer, and six histidines in the pCDNA-3.1 plasmid. Following transformation, the cells were selected with geneticin-G418 and purified from serum-fre culture supernatants using Ni2+-agarand size exclusion chromatography. The protein was structurally identified by cross-linking and circular dichroism experiments, and utilized to immunize mice in conjuction with AS03 or alum adjuvants. The mice sera were examined for antibody recognition, receptor-binding inhibition, and virus neutralization, while spleens were evaluated for γ-interferon production in the presence of RBD. RESULTS: The protein released in the culture supernatant of cells, and exhibited a molecular mass of 135 kDa with a secondary structure like the monomeric and trimeric RBD. After purification, it formed a multimeric structure comprising trimers and hexamers, which were able to bind the ACE2 receptor. It generated high antibody titers in mice when combined with AS03 adjuvant (up to 1:50,000). The sera were capable of inhibiting binding of biotin-labeled ACE2 to the virus S1 subunit and could neutralize the entry of the Wuhan virus strain into cells at dilutions up to 1:2000. It produced specific IFN-γ producing cells in immunized mouse splenocytes. DISCUSSION: Our data describe a new RBD containing protein, forming trimers and hexamers, which are able to induce a protective humoral and cellular response against SARS-CoV2. CONCLUSION: These results add a new arsenal to combat COVID-19, as an alternative immunogen or antigen for diagnosis.


Assuntos
Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Proteínas Recombinantes , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , Camundongos , Anticorpos Neutralizantes/imunologia , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Células HEK293 , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , Camundongos Endogâmicos BALB C , Feminino , Multimerização Proteica , Domínios Proteicos/imunologia , Ligação Proteica
3.
J Med Virol ; 95(2): e28481, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36609686

RESUMO

The main coronavirus disease 2019 (COVID-19) vaccine formulations used today are mainly based on the wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein as an antigen. However, new virus variants capable of escaping neutralization activity of serum antibodies elicited in vaccinated individuals have emerged. The Omicron (B.1.1.529) variant caused epidemics in regions of the world in which most of the population has been vaccinated. In this study, we aimed to understand what determines individual's susceptibility to Omicron in a scenario of extensive vaccination. For that purpose, we collected nasopharynx swab (n = 286) and blood samples (n = 239) from flu-like symptomatic patients, as well as their vaccination history against COVID-19. We computed the data regarding vaccine history, COVID-19 diagnosis, COVID-19 serology, and viral genome sequencing to evaluate their impact on the number of infections. As main results, we showed that vaccination in general did not reduce the number of individuals infected by Omicron, even with an increased immune response found among vaccinated, noninfected individuals. Nonetheless, we found that individuals who received the third vaccine dose showed significantly reduced susceptibility to Omicron infections. A relevant evidence that support this finding was the higher virus neutralization capacity of serum samples of most patients who received the third vaccine dose. In summary, this study shows that boosting immune responses after a third vaccine dose reduces susceptibility to COVID-19 caused by the Omicron variant. Results presented in this study are useful for future formulations of COVID-19 vaccination policies.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Teste para COVID-19 , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
4.
Front Cell Infect Microbiol ; 12: 906578, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051243

RESUMO

The epitranscriptomics of the SARS-CoV-2 infected cell reveals its response to viral replication. Among various types of RNA nucleotide modifications, the m6A is the most common and is involved in several crucial processes of RNA intracellular location, maturation, half-life and translatability. This epitranscriptome contains a mixture of viral RNAs and cellular transcripts. In a previous study we presented the analysis of the SARS-CoV-2 RNA m6A methylation based on direct RNA sequencing and characterized DRACH motif mutations in different viral lineages. Here we present the analysis of the m6A transcript methylation of Vero cells (derived from African Green Monkeys) and Calu-3 cells (human) upon infection by SARS-CoV-2 using direct RNA sequencing data. Analysis of these data by nonparametric statistics and two computational methods (m6anet and EpiNano) show that m6A levels are higher in RNAs of infected cells. Functional enrichment analysis reveals increased m6A methylation of transcripts involved in translation, peptide and amine metabolism. This analysis allowed the identification of differentially methylated transcripts and m6A unique sites in the infected cell transcripts. Results here presented indicate that the cell response to viral infection not only changes the levels of mRNAs, as previously shown, but also its epitranscriptional pattern. Also, transcriptome-wide analysis shows strong nucleotide biases in DRACH motifs of cellular transcripts, both in Vero and Calu-3 cells, which use the signature GGACU whereas in viral RNAs the signature is GAACU. We hypothesize that the differences of DRACH motif biases, might force the convergent evolution of the viral genome resulting in better adaptation to target sequence preferences of writer, reader and eraser enzymes. To our knowledge, this is the first report on m6A epitranscriptome of the SARS-CoV-2 infected Vero cells by direct RNA sequencing, which is the sensu stricto RNA-seq.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Viés , Chlorocebus aethiops , Humanos , Nucleotídeos , RNA Viral/genética , SARS-CoV-2/genética , Análise de Sequência de RNA , Células Vero
5.
Adv Biol (Weinh) ; 6(8): e2200002, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35521969

RESUMO

The effects of neuroinvasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) become clinically relevant due to the numerous neurological symptoms observed in Corona Virus Disease 2019 (COVID-19) patients during infection and post-COVID syndrome or long COVID. This study reports the biofabrication of a 3D bioprinted neural-like tissue as a proof-of-concept platform for a more representative study of SARS-CoV-2 brain infection. Bioink is optimized regarding its biophysical properties and is mixed with murine neural cells to construct a 3D model of COVID-19 infection. Aiming to increase the specificity to murine cells, SARS-CoV-2 is mouse-adapted (MA-SARS-CoV-2) in vitro, in a protocol first reported here. MA-SARS-CoV-2 reveals mutations located at the Orf1a and Orf3a domains and is evolutionarily closer to the original Wuhan SARS-CoV-2 strain than SARS-CoV-2 used for adaptation. Remarkably, MA-SARS-CoV-2 shows high specificity to murine cells, which present distinct responses when cultured in 2D and 3D systems, regarding cell morphology, neuroinflammation, and virus titration. MA-SARS-CoV-2 represents a valuable tool in studies using animal models, and the 3D neural-like tissue serves as a powerful in vitro platform for modeling brain infection, contributing to the development of antivirals and new treatments for COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Encéfalo , COVID-19/complicações , Humanos , Camundongos , Neurônios , Síndrome de COVID-19 Pós-Aguda
7.
Viruses ; 13(11)2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834915

RESUMO

The causative agent of COVID-19 pandemic, SARS-CoV-2, has a 29,903 bases positive-sense single-stranded RNA genome. RNAs exhibit about 150 modified bases that are essential for proper function. Among internal modified bases, the N6-methyladenosine, or m6A, is the most frequent, and is implicated in SARS-CoV-2 immune response evasion. Although the SARS-CoV-2 genome is RNA, almost all genomes sequenced thus far are, in fact, reverse transcribed complementary DNAs. This process reduces the true complexity of these viral genomes because the incorporation of dNTPs hides RNA base modifications. Here, we present an initial exploration of Nanopore direct RNA sequencing to assess the m6A residues in the SARS-CoV-2 sequences of ORF3a, E, M, ORF6, ORF7a, ORF7b, ORF8, N, ORF10 and the 3'-untranslated region. We identified fifteen m6A methylated positions, of which, six are in ORF N. Additionally, because m6A is associated with the DRACH motif, we compared its distribution in major SARS-CoV-2 variants. Although DRACH is highly conserved among variants, we show that variants Beta and Eta have a fourth position C > U change in DRACH at 28,884b that could affect methylation. This is the first report of direct RNA sequencing of a Brazilian SARS-CoV-2 sample coupled with the identification of modified bases.


Assuntos
Adenosina/análogos & derivados , COVID-19/virologia , Evasão da Resposta Imune/genética , RNA Viral/metabolismo , SARS-CoV-2/genética , Regiões 3' não Traduzidas , Adenosina/metabolismo , Animais , Chlorocebus aethiops , Genoma Viral , Humanos , Metilação , Sequenciamento por Nanoporos/métodos , Fases de Leitura Aberta , Análise de Sequência de RNA/métodos , Células Vero
8.
Vaccines (Basel) ; 9(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34696219

RESUMO

Most approved vaccines against COVID-19 have to be administered in a prime/boost regimen. We engineered a novel vaccine based on a chimeric human adenovirus 5 (hAdV5) vector. The vaccine (named CoroVaxG.3) is based on three pillars: (i) high expression of Spike to enhance its immunodominance by using a potent promoter and an mRNA stabilizer; (ii) enhanced infection of muscle and dendritic cells by replacing the fiber knob domain of hAdV5 by hAdV3; (iii) use of Spike stabilized in a prefusion conformation. The transduction with CoroVaxG.3-expressing Spike (D614G) dramatically enhanced the Spike expression in human muscle cells, monocytes and dendritic cells compared to CoroVaxG.5 that expressed the native fiber knob domain. A single dose of CoroVaxG.3 induced a potent humoral immunity with a balanced Th1/Th2 ratio and potent T-cell immunity, both lasting for at least 5 months. Sera from CoroVaxG.3-vaccinated mice was able to neutralize pseudoviruses expressing B.1 (wild type D614G), B.1.117 (alpha), P.1 (gamma) and B.1.617.2 (delta) Spikes, as well as an authentic P.1 SARS-CoV-2 isolate. Neutralizing antibodies did not wane even after 5 months, making this kind of vaccine a likely candidate to enter clinical trials.

9.
PLoS One ; 10(9): e0139037, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26413773

RESUMO

In order to establish new infections HIV-1 particles need to attach to receptors expressed on the cellular surface. HIV-1 particles interact with a cell membrane receptor known as CD4 and subsequently with another cell membrane molecule known as a co-receptor. Two major different co-receptors have been identified: C-C chemokine Receptor type 5 (CCR5) and C-X-C chemokine Receptor type 4 (CXCR4) Previous reports have demonstrated cellular modifications upon HIV-1 binding to its co-receptors including gene expression modulations. Here we investigated the effect of viral binding to either CCR5 or CXCR4 co-receptors on viral diversity after a single round of reverse transcription. CCR5 and CXCR4 pseudotyped viruses were used to infect non-stimulated and stimulated PBMCs and purified CD4 positive cells. We adopted the SOLiD methodology to sequence virtually the entire proviral DNA from all experimental infections. Infections with CCR5 and CXCR4 pseudotyped virus resulted in different patterns of genetic diversification. CCR5 virus infections produced extensive proviral diversity while in CXCR4 infections a more localized substitution process was observed. In addition, we present pioneering results of a recently developed method for the analysis of SOLiD generated sequencing data applicable to the study of viral quasi-species. Our findings demonstrate the feasibility of viral quasi-species evaluation by NGS methodologies. We presented for the first time strong evidence for a host cell driving mechanism acting on the HIV-1 genetic variability under the control of co-receptor stimulation. Additional investigations are needed to further clarify this question, which is relevant to viral diversification process and consequent disease progression.


Assuntos
DNA Viral/genética , HIV-1/genética , Mutação/genética , Provírus/genética , Tropismo/genética , Substituição de Aminoácidos , Linfócitos T CD4-Positivos/imunologia , Códon/genética , Eletroforese em Gel de Ágar , Citometria de Fluxo , Infecções por HIV/imunologia , Infecções por HIV/virologia , Células HeLa , Humanos , Nucleotídeos/genética , Fases de Leitura Aberta/genética , Receptores CCR5/metabolismo , Análise de Sequência de DNA , Estatística como Assunto
10.
PLoS One ; 10(4): e0119234, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25875202

RESUMO

Epigenetic modifications refer to a number of biological processes which alter the structure of chromatin and its transcriptional activity such as DNA methylation and histone post-translational processing. Studies have tried to elucidate how the viral genome and its products are affected by epigenetic modifications imposed by cell machinery and how it affects the ability of the virus to either, replicate and produce a viable progeny or be driven to latency. The purpose of this study was to evaluate epigenetic modifications in PBMCs and CD4+ cells after HIV-1 infection analyzing three approaches: (i) global DNA- methylation; (ii) qPCR array and (iii) western blot. HIV-1 infection led to methylation increases in the cellular DNA regardless the activation status of PBMCs. The analysis of H3K9me3 and H3K27me3 suggested a trend towards transcriptional repression in activated cells after HIV-1 infection. Using a qPCR array, we detected genes related to epigenetic processes highly modulated in activated HIV-1 infected cells. SETDB2 and RSK2 transcripts showed highest up-regulation levels. SETDB2 signaling is related to transcriptional silencing while RSK2 is related to either silencing or activation of gene expression depending on the signaling pathway triggered down-stream. In addition, activated cells infected by HIV-1 showed lower CD69 expression and a decrease of IL-2, IFN-γ and metabolism-related factors transcripts indicating a possible functional consequence towards global transcriptional repression found in HIV-1 infected cells. Conversely, based on epigenetic markers studied here, non-stimulated cells infected by HIV-1, showed signs of global transcriptional activation. Our results suggest that HIV-1 infection exerts epigenetic modulations in activated cells that may lead these cells to transcriptional repression with important functional consequences. Moreover, non-stimulated cells seem to increase gene transcription after HIV-1 infection. Based on these observations, it is possible to speculate that the outcome of viral infections may be influenced by the cellular activation status at the moment of infection.


Assuntos
Epigênese Genética , Infecções por HIV/genética , HIV-1/fisiologia , Leucócitos Mononucleares/virologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Células Clonais , Infecções por HIV/imunologia , Histonas/análise , Histonas/genética , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Ativação Linfocitária , Processamento de Proteína Pós-Traducional
11.
Eur J Immunol ; 45(5): 1452-61, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25688546

RESUMO

The participation of B-1 cells in a murine model of spontaneous diabetes has been recently reported. Here, we describe the role of B-1 cells in streptozotocin (STZ) induced diabetes in mice. We demonstrated that XID (B-1 cell-deficient) mice are more susceptible to STZ treatment than WT mice, as evidenced by their higher blood glucose level in response to STZ. Unexpectedly, the XID mice that were i.p. transferred with purified B-1 cells, either before or after the STZ treatment, did not develop diabetes. These cell transfers provided long-lasting protection for the XID mice against STZ-induced diabetes, suggesting that B-1 cells play an important role in the experimental diabetes pathobiology. We also showed that B-1 cell culture supernatants were able to regulate the blood glucose level of the diabetic XID mice, and we identified insulin-producing cells when B-1 cells were differentiated in B-1 cell-derived phagocyte in vitro. These findings provide a novel role for B-1 cells in metabolic processes, presenting a new mechanism to explain the pathogenesis of diabetes and a possible therapeutical target.


Assuntos
Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/prevenção & controle , Insulina/biossíntese , Transferência Adotiva , Tirosina Quinase da Agamaglobulinemia , Animais , Subpopulações de Linfócitos B/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus Experimental/etiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/imunologia , Estreptozocina/administração & dosagem , Estreptozocina/toxicidade
12.
Immunol Cell Biol ; 93(1): 86-98, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25223833

RESUMO

Current therapies against malignant melanoma generally fail to increase survival in most patients, and immunotherapy is a promising approach as it could reduce the dosage of toxic therapeutic drugs. In the present study, we show that an immunotherapeutic approach based on the use of the Toll-like receptor (TLR)-5 ligand flagellin (Salmonella Typhimurium FliCi) combined with the major histocompatibility complex class II-restricted P10 peptide, derived from the Paracoccidioides brasiliensis gp43 major surface protein, reduced the number of lung metastasis in a murine melanoma model. Compounds were administered intranasally into C57Bl/6 mice intravenously challenged with syngeneic B16F10-Nex2 melanoma cells, aiming at the local (pulmonary) immune response modulation. Along with a marked reduction in the number of lung nodules, a significant increase in survival was observed. The immunization regimen induced both local and systemic proinflammatory responses. Lung macrophages were polarized towards a M1 phenotype, lymph node cells, and splenocytes secreted higher interleukin-12p40 and interferon (IFN)-γ levels when re-stimulated with tumor antigens. The protective effect of the FliCi+P10 formulation required TLR-5, myeloid differentiation primary response gene 88 and IFN-γ expression, but caspase-1 knockout mice were only partially protected, suggesting that intracellular flagellin receptors are not involved with the anti-tumor effect. The immune therapy resulted in the activation of tumor-specific CD4(+) T lymphocytes, which conferred protection to metastatic melanoma growth after adoptive transfer. Taken together, our results report a new immunotherapeutic approach based on TLR-5 activation and IFN-γ production capable to control the metastatic growth of B16F10-Nex2 melanoma, being a promising alternative to be associated with chemotherapeutic drugs for an effective anti-tumor responses.


Assuntos
Antígenos de Bactérias/imunologia , Vacinas Anticâncer/imunologia , Flagelina/imunologia , Glicoproteínas/imunologia , Imunoterapia/métodos , Neoplasias Pulmonares/terapia , Melanoma Experimental/terapia , Fragmentos de Peptídeos/imunologia , Administração Intranasal , Administração através da Mucosa , Animais , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/genética , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/genética , Caspase 1/deficiência , Caspase 1/genética , Flagelina/administração & dosagem , Flagelina/genética , Expressão Gênica , Glicoproteínas/administração & dosagem , Glicoproteínas/genética , Injeções Intravenosas , Interferon gama/agonistas , Interferon gama/biossíntese , Interferon gama/imunologia , Subunidade p40 da Interleucina-12/biossíntese , Subunidade p40 da Interleucina-12/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Linfonodos/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Metástase Neoplásica , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/genética , Receptor 5 Toll-Like/agonistas , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/imunologia
13.
Intervirology ; 57(5): 277-88, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24994530

RESUMO

Human immunodeficiency virus type 1 (HIV-1) genetic diversity is one of the most important features of HIV-1 infections and the result of error accumulation during reverse transcription and of high viral turnover. HIV-1 reverse transcription is influenced by factors such as the level of nucleotides and/or the cellular activation state. HIV-1 diversity was investigated after 48 h of viral propagation in peripheral blood mononuclear cells (PBMCs) obtained from healthy donors in three different cell culture conditions: (1) resting PBMCs, (2) simultaneous infection and PBMC activation, and (3) PBMC activation 72 h before infection. Cellular DNA was extracted and proviruses of each culture condition were amplified. Single-genome PCR clones were obtained and the protease and reverse transcriptase of the pol gene were sequenced. An elevated number of nucleotide substitutions in all three culture conditions were observed. In condition 1, the mutational rate observed ranged from 1.0 × 10(-3) to 2.1 × 10(-2), the genetic diversity was 0.6%, and hypermutation was observed in 7.1% of sequenced clones. In condition 2, the mutational rate ranged from 1.0 × 10(-3) to 1.0 × 10(-2), the genetic diversity was 0.8%, and hypermutation affected 6.7% of clones. In condition 3, the mutational rate ranged from 2.8 × 10(-3) to 1.1 × 10(-2), the genetic diversity was 1%, and 5.9% of clones were hypermutated. Substitutions occurred more frequently in some specific nucleotide stretches, and a common pattern for substitutions in all the different conditions was identified. There was a significant accumulation of mutations during the initial periods of in vitro HIV-1 propagation irrespective of culture conditions. The rapid accumulation of virus diversity might represent a viral strategy when colonizing new hosts. Complementary studies are necessary to allow for a better understanding of the initial periods of infection, which represent a crucial event related to disease progression.


Assuntos
Variação Genética , HIV-1/crescimento & desenvolvimento , HIV-1/genética , Leucócitos Mononucleares/virologia , Mutação , Produtos do Gene pol/genética , Protease de HIV/genética , Transcriptase Reversa do HIV/genética , Humanos , Taxa de Mutação , Análise de Sequência de DNA , Cultura de Vírus
14.
Immunol Invest ; 43(7): 675-92, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24950194

RESUMO

New Zealand Black X New Zealand White F1 [(NZB/NZW)F1] mice develop an autoimmune condition with similarities to human systemic lupus erythematosus (SLE). In this study, we demonstrate that B-1 cells, which have previously been reported to be involved in several autoimmune diseases, have altered gene expression in these mice. RNA was extracted from purified B-1 cells of disease-free C57BL/6 mice and lupus-prone (NZB/NZW)F1 mice. Gene expression was analysed using DNA microarray techniques and validated by real time reverse transcriptase polymerase chain reaction (RT-PCR). In (NZB/NZW)F1 mice, some genes had altered expression patterns compared to disease-free controls. Specifically, the upregulation of Ifitm1, Pvrl2 and Ifi202b and downregulation of Trp53bp1 mRNA were observed in (NZB/NZW)F1 mice. These genes are known to be associated with autoimmune diseases. This pattern of gene expression in B-1 cells could understanding of the pathogenesis of SLE. Thus, it is reasonable to hypothesise that the altered gene expression observed in B-1 cells in our experimental model is important for SLE prognosis and therapy, and these implications are discussed herein.


Assuntos
Linfócitos B/imunologia , Lúpus Eritematoso Sistêmico/genética , Animais , Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos
15.
Brain Behav Immun ; 37: 177-86, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24362236

RESUMO

Experimental autoimmune encephalomyelitis (EAE) has been widely employed as a model to study multiple sclerosis (MS) and indeed has allowed some important advances in our comprehension of MS pathogenesis. Several pieces of evidence suggest that infiltrating Th1 and Th17 lymphocytes are important players leading to CNS demyelination and lesion during the peak of murine EAE. Subsequently, effector T cell responses rapidly decline and the recovery phase of the disease strongly correlates with the expression of anti-inflammatory cytokines and the enrichment of Foxp3+ regulatory T (Treg) cells within the target organ. However, the mechanisms leading to the increased presence of Treg cells and to the remission phase of the disease are still poorly understood. Recent researches demonstrated that chemically induced amino-acid starvation response might suppress CNS immune activity. Here we verified an important participation of the general control nonrepressible 2 (GCN2), a key regulator kinase of the amino-acid starvation response, in the development of the remission phase of EAE in C57BL/6 mice. By immunizing wild type C57BL/6 (WT) and GCN2 knock-out mice (GCN2 KO) with myelin oligodendrocyte glycoprotein peptide (MOG35-55), it was noticed that GCN2 KO mice did not develop the remission phase of the disease and this was associated with higher levels of CNS inflammation and increased presence of effector T cells (Th1/Th17). These animals also showed lower frequency of Treg cells within the CNS as compared to WT animals. Higher expression of indoleamine 2,3-dioxygenase (IDO) and higher frequency of plasmacytoid dendritic cells (pDCs) were found at the peak of the disease in the CNS of WT animals. Our results suggest that the GCN2 kinase-dependent sensing of IDO activity represents an important trigger to the EAE remission phase. The IDO-mediated immunoregulatory events may include the arresting of effector T cell responses and the differentiation/expansion of Treg cells within the target organ.


Assuntos
Encefalomielite Autoimune Experimental/enzimologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Fatores de Transcrição Forkhead/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Remissão Espontânea , Medula Espinal/patologia , Células Th1/metabolismo , Células Th17/metabolismo
16.
Eur J Immunol ; 43(4): 1001-12, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23436577

RESUMO

Beta2-adrenergic receptor (B2AR) signaling is known to impair Th1-cell differentiation and function in a cAMP-dependent way, leading to inhibition of cell proliferation and decreased production of IL-2 and IFN-γ. CD4(+) Foxp3(+) Treg cells play a key role in the regulation of immune responses and are essential for maintenance of self-tolerance. Nevertheless, very little is known about adrenergic receptor expression in Treg cells or the influence of noradrenaline on their function. Here we show that Foxp3(+) Treg cells express functional B2AR. B2AR activation in Treg cells leads to increased intracellular cAMP levels and to protein kinase A (PKA)-dependent CREB phosphorylation. We also found that signaling via B2AR enhances the in vitro suppressive activity of Treg cells. B2AR-mediated increase in Treg-cell suppressive function was associated with decreased IL-2 mRNA levels in responder CD4(+) T cells and improved Treg-cell-induced conversion of CD4(+) Foxp3(-) cells into Foxp3(+) induced Treg cells. Moreover, B2AR signaling increased CTLA-4 expression in Treg cells in a PKA-dependent way. Finally, we found that PKA inhibition totally prevented the B2AR-mediated increase in Treg-cell suppressive function. Our data suggest that sympathetic fibers are able to regulate Treg-cell suppressive activity in a positive manner through B2AR signaling.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Antígenos CD4/metabolismo , Antígeno CTLA-4/imunologia , Antígeno CTLA-4/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Interleucina-2/biossíntese , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout
17.
PLoS One ; 7(12): e51384, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251513

RESUMO

BACKGROUND: P21 is a secreted protein expressed in all developmental stages of Trypanosoma cruzi. The aim of this study was to determine the effect of the recombinant protein based on P21 (P21-His(6)) on inflammatory macrophages during phagocytosis. FINDINGS: Our results showed that P21-His(6) acts as a phagocytosis inducer by binding to CXCR4 chemokine receptor and activating actin polymerization in a way dependent onthe PI3-kinase signaling pathway. CONCLUSIONS: Thus, our results shed light on the notion that native P21 is a component related to T. cruzi evasion from the immune response and that CXCR4 may be involved in phagocytosis. P21-His(6) represents an important experimental control tool to study phagocytosis signaling pathways of different intracellular parasites and particles.


Assuntos
Fagocitose , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Receptores CXCR4/metabolismo , Proteínas Recombinantes/metabolismo
18.
Fungal Genet Biol ; 47(2): 179-89, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19825426

RESUMO

Glycoprotein gp70 is an important intracellular antigen from Paracoccidioides brasiliensis that elicits both humoral and cellular immune responses. Herein, the PbGP70 gene cloning from isolate Pb18 using internal peptide sequence information is reported. The deduced protein sequence bears two N-glycosylation sites, antigenic sites and two mouse T-cell epitopes. Anti-recombinant gp70 (rPbgp70) polyclonal antibodies reacted with a 70-kDa component in total cell extract of P. brasiliensis, while MAbC5F11 and paracoccidioidomycosis patients' sera recognized rPbgp70. Confocal microscopy with anti-rPbgp70 and MAbC5F11 showed intense staining and cytoplasmatic co-localization. The protein sequence belongs to the flavoprotein monooxygenase family which groups important anti-oxidative bioactive compounds. We found increased PbGP70 transcript accumulation under oxidative stress induced by H(2)O(2), during fungal growth and in macrophage phagocyted/bound yeasts. Therefore, gp70 might play a dual role in P. brasiliensis by both eliciting immune cellular and humoral responses in the host and protecting the fungus from oxidative stress generated by phagocytic cells.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Paracoccidioides/enzimologia , Paracoccidioides/genética , Sequência de Aminoácidos , Animais , Southern Blotting , Células Cultivadas , Flavoproteínas/metabolismo , Proteínas Fúngicas/química , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/genética , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Peróxido de Hidrogênio/farmacologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Paracoccidioides/efeitos dos fármacos , Paracoccidioides/crescimento & desenvolvimento , Homologia de Sequência de Aminoácidos
19.
Microbes Infect ; 11(1): 92-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19026760

RESUMO

Paracoccidioidomycosis (PCM) is a systemic granulomatous disease caused by Paracoccidioides brasiliensis (Pb), a thermal dimorphic fungus. Its major antigen is a 43-kDa glycoprotein. Gp43 embodies different functions: it participates in evasion mechanisms during the installation of primary infection, stimulates granuloma-like formation in vitro and presents T-cell epitopes that induce protective response against the fungus. Here, we investigated epitopes from gp43 inhibitory of both, macrophage functions and inflammatory reaction. Different gp43 peptides, spanning the entire sequence of the molecule, were added to cultures of bone marrow-derived macrophages. After challenge with zymosan or Pb cells, phagocytic indexes were measured. Peptides expressed on the molecule surface were determined by graphic analysis using the Protean module; DNAstar Inc. Two peptides which decreased phagocytic index and were expressed at the surface of the molecule, P4 and P23, were selected for further studies. It was shown that both inhibited the release of NO by zymosan stimulated macrophages while enhanced release of H(2)O(2). The release of TNF-alpha in culture supernatants from in vitro phagocytic tests showed different response depending of P4 concentration (data not shown). In vivo assays with Mycobacterium bovis - bacillus Calmette-Guérin (BCG) or Pb cells demonstrated that these peptides presented non-specific and specific anti-inflammatory properties.


Assuntos
Antígenos de Fungos/química , Proteínas Fúngicas/química , Glicoproteínas/química , Macrófagos/efeitos dos fármacos , Paracoccidioides/imunologia , Peptídeos/farmacologia , Animais , Antígenos de Fungos/farmacologia , Células Cultivadas , Feminino , Proteínas Fúngicas/farmacologia , Glicoproteínas/farmacologia , Inflamação/tratamento farmacológico , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Paracoccidioides/química , Paracoccidioidomicose/microbiologia , Peptídeos/síntese química , Peptídeos/química , Fagocitose/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA