RESUMO
Multiple myeloma (MM) progression is closely dependent on cells in the bone marrow (BM) microenvironment, including fibroblasts (FBs) and immune cells. In their BM niche, MM cells adhere to FBs sustaining immune evasion, drug resistance and the undetectable endurance of tumor cells known as minimal residual disease (MRD). Here, we describe the novel bi-specific designed ankyrin repeat protein (DARPin) α-FAPx4-1BB (MP0310) with FAP-dependent 4-1BB agonistic activity. The α-FAPx4-1BB DARPin simultaneously binds to FAP and 4-1BB overexpressed by activated FBs and immune cells, respectively. Although flow cytometry analysis showed that T and NK cells from MM patients were not activated and did not express 4-1BB, stimulation with daratumumab or elotuzumab, monoclonal antibodies (mAbs) currently used for the treatment of MM, significantly upregulated 4-1BB both in vitro and in MM patients following mAb-based therapy. The mAb-induced 4-1BB overexpression allowed the engagement of α-FAPx4-1BB that acted as a bridge between FAP+FBs and 4-1BB+NK cells. Therefore, α-FAPx4-1BB enhanced both the adhesion of daratumumab-treated NK cells on FBs as well as their activation by improving release of CD107a and perforin, hence MM cell killing via antibody-mediated cell cytotoxicity (ADCC). Interestingly, α-FAPx4-1BB significantly potentiated daratumumab-mediated ADCC in the presence of FBs, suggesting that it may overcome the BM FBs' immunosuppressive effect. Overall, we speculate that treatment with α-FAPx4-1BB may represent a valuable strategy to improve mAb-induced NK cell activity fostering MRD negativity in MM patients through the eradication of latent MRD cells.
Assuntos
Anticorpos Monoclonais Humanizados , Anticorpos Monoclonais , Células Matadoras Naturais , Mieloma Múltiplo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Humanos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/agonistas , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/agonistas , EndopeptidasesRESUMO
Endothelium damage triggers the multimeric protein von Willebrand factor (VWF) release and subsequent binding to platelets, which are recruited at sites of vascular injury. A complex and fragile equilibrium between circulating levels of von Willebrand factor and its metalloprotease, ADAMTS13, is responsible for the hemostatic balance. However, the presence of autoantibodies targeting ADAMTS13 results in an increase in von Willebrand factor, mainly in its ultra-large multimers. The latter lead to platelet aggregation, the formation of thrombi and microangiopathic hemolytic anemia. This pathologic condition, known as immune-mediated thrombotic thrombocytopenic purpura (iTTP), occurs with high morbidity and a high rate of relapses. In this work, the long-term follow-up of 40 patients with iTTP is reported. We assessed ADAMTS13 activity, plasmatic VWF levels and the ADAMTS13/VWF ratio, comparing iTTP relapsing patients with remitting ones. A decrease in the ADAMTS13/VWF ratio, along with a reduced ADAMTS13 activity, could serve as predictive and sensitive biomarkers of incoming relapses.
RESUMO
The antiphospholipid antibodies (aPL) increase the risk of developing thrombotic events and may coexist with a variety of autoimmune diseases. They can be detected chronically or temporarily in patients with infectious diseases, during drug therapy, or in cases of cancer. A thrombotic event with aPL detection is known as antiphospholipid syndrome (APS) and the diagnostic criteria include the presence of lupus anticoagulant (LA), anticardiolipin (aCL) and ß2-glycoprotein-1(aß2GPI) antibodies. Other autoantigens recognized in APS are phosphatidylserine (aPS), prothrombin (aPT) and Annexin-5 (aA5). This real life study aimed to explore the connections between laboratory criteria and the prevalence of "non-criteria aPL" in APS. This study followed 300 patients with thrombosis and employed two phospholipid sensitivity assays for LA detection, chemiluminescence assays for aCL and aß2GPI and enzyme-linked immunoassays for aPS, aPT and aA5. A significant association was found between aPS and aCL (r = 0.76) as well as aß2GPI (r = 0.77), while the association with LA was less significant (r = 0.33). The results of the aPT and aA5 test did not correlate with criteria-antiphospholipid antibodies (r < 0.30). Since the risk of thrombotic complications increases with the intensity and the number of positive autoantibodies, measuring aPT and aA5 autoantibodies may be useful, particularly in aCL/aß2GPI-negative patients or in cases of isolated LA positivity.
RESUMO
After Rudolf Virchow's pioneering works, technological advances boosted the scientific interest in this research field, which nowadays is still far from extinguished [...].
Assuntos
Medicina Molecular , História do Século XIXRESUMO
Hemodialysis (HD) is known to trigger a chronic inflammatory status, affecting the innate and acquired immune response. This study was aimed at a comparative analysis of immune cell subsets, proliferation, and apoptosis in subjects receiving chronic HD treatment with respect to a healthy control. Regardless of the dialysis filter used, we observed a reshaping of the acquired immune component both with respect to healthy patients and between the various sessions of dialysis treatment, with an impairment of CD3 cells, along with an increase in CD4 and CD8 cell populations producing pro-inflammatory factors such as IL-17 and IFN-gamma. The population of B cells, monocytes and NK cells were not impaired by the dialysis procedure. These results confirmed the high impact of the HD treatment on the patient's immune system, underlying the imbalance of T cell counterparts.
RESUMO
Extracellular vesicles (EVs) have emerged as important players in cell-to-cell communication within the bone marrow (BM) of multiple myeloma (MM) patients, where they mediate several tumor-associated processes. Here, we investigate the contribution of fibroblasts-derived EVs (FBEVs) in supporting BM angiogenesis. We demonstrate that FBEVs' cargo contains several angiogenic cytokines (i.e., VEGF, HGF, and ANG-1) that promote an early over-angiogenic effect independent from EVs uptake. Interestingly, co-culture of endothelial cells from MM patients (MMECs) with FBEVs for 1 or 6 h activates the VEGF/VEGFR2, HGF/HGFR, and ANG-1/Tie2 axis, as well as the mTORC2 and Wnt/ß-catenin pathways, suggesting that the early over-angiogenic effect is a cytokine-mediated process. FBEVs internalization occurs after longer exposure of MMECs to FBEVs (24 h) and induces a late over-angiogenic effect by increasing MMECs migration, chemotaxis, metalloproteases release, and capillarogenesis. FBEVs uptake activates mTORC1, MAPK, SRC, and STAT pathways that promote the release of pro-angiogenic cytokines, further supporting the pro-angiogenic milieu. Overall, our results demonstrate that FBEVs foster MM angiogenesis through dual time-related uptake-independent and uptake-dependent mechanisms that activate different intracellular pathways and transcriptional programs, providing the rationale for designing novel anti-angiogenic strategies.
RESUMO
The treatment of bone injuries must be timely and effective to improve the chances of full recovery. In this respect, a mix of hyaluronic acid and an amino acidic pool has been marketed to promote soft tissue healing, fastening recovery times. Several studies have reported the in vitro and in vivo influence of hyaluronic acid and amino acids on fibroblasts and keratinocytes, highlighting the enhancement of cell proliferation, motility and cytokines synthesis. Even though the effectiveness of this combination of molecules on bone repair has been described in vivo, to the best of our knowledge, its in vitro effects on osteoblasts still need to be investigated. Therefore, this work describes for the first time osteoblast metabolism, proliferation and in vitro differentiation in the presence of hyaluronic acid and amino acids, aiming at understanding the mechanisms underlying their effectiveness in injured tissue repair. The reported results demonstrate the enhancement of osteoblasts' metabolic activity and the fastening of cell cycle progression. Furthermore, gene expression studies show a significant increase in differentiation markers, i.e., osteoprotegerin and osteonectin. Finally, alkaline phosphatase activity is also boosted by the combination of hyaluronic acid and aminoacids, confirming the ability of in vitro cultured cells to properly differentiate through the osteogenic lineage.
RESUMO
Human fetal membrane mesenchymal stromal cells (hFM-MSCs) are a cell population easily isolable from the amniochorionic membrane of term placentas, without ethical issues or safety limitations. We previously reported that hFM-MSCs share some epigenetic characteristics with pluripotent stem cells and can overcome the mesenchymal commitment. Here, we demonstrated that hFM-MSCs can give rise to spinal motor neurons by the sequential exposure to specific factors that induced a neuralization, caudalization and ventralization of undifferentiated cells, leading to a gradual gene and protein upregulation of early and late MN markers. Also, spontaneous electrical activity (spikes and bursts) was recorded. Finally, when co-cultured with myotubes, differentiated MNs were able to create functional neuromuscular junctions that induced robust skeletal muscle cell contractions. These data demonstrated the hFM-MSCs can generate a mature and functional MN population that may represent an alternative source for regenerative medicine, disease modeling or drug screening.
RESUMO
Serological assays are useful in investigating the development of humoral immunity against SARS-CoV-2 in the context of epidemiological studies focusing on the spread of protective immunity. The plaque reduction neutralization test (PRNT) is the gold standard method to assess the titer of protective antibodies in serum samples. However, to provide a result, the PRNT requires several days, skilled operators, and biosafety level 3 laboratories. Therefore, alternative methods are being assessed to establish a relationship between their outcomes and PRNT results. In this work, four different immunoassays (Roche Elecsys® Anti SARS-CoV-2 S, Snibe MAGLUMI® SARS-CoV-2 S-RBD IgG, Snibe MAGLUMI® 2019-nCoV IgG, and EUROIMMUN® SARS-CoV-2 NeutraLISA assays, respectively) have been performed on individuals healed after SARS-CoV-2 infection. The correlation between each assay and the reference method has been explored through linear regression modeling, as well as through the calculation of Pearson's and Spearman's coefficients. Furthermore, the ability of serological tests to discriminate samples with high titers of neutralizing antibodies (>160) has been assessed by ROC curve analyses, Cohen's Kappa coefficient, and positive predictive agreement. The EUROIMMUN® NeutraLISA assay displayed the best correlation with PRNT results (Pearson and Spearman coefficients equal to 0.660 and 0.784, respectively), as well as the ROC curve with the highest accuracy, sensitivity, and specificity (0.857, 0.889, and 0.829, respectively).
Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Imunoglobulina G , Sensibilidade e Especificidade , Testes Sorológicos/métodosRESUMO
Human amniotic fluids stem cells (hAFSCs) can be easily isolated from the amniotic fluid during routinely scheduled amniocentesis. Unlike hiPSCs or hESC, they are neither tumorigenic nor immunogenic and their use does not rise ethical or safety issues: for these reasons they may represent a good candidate for the regenerative medicine. hAFSCs are generally considered multipotent and committed towards the mesodermal lineages; however, they express many pluripotent markers and share some epigenetic features with hiPSCs. Hence, we hypothesized that hAFSCs may overcome their mesodermal commitment differentiating into to ectodermal lineages. Here we demonstrated that by the sequential exposure to specific factors, hAFSCs can give rise to spinal motor neurons (MNs), as evidenced by the gradual gene and protein upregulation of early and late MN markers (PAX6, ISL1, HB9, NF-L, vAChT). When co-cultured with myotubes, hAFSCs-derived MNs were able to create functional neuromuscular junctions that induced robust skeletal muscle contractions. These data demonstrated the hAFSCs are not restricted to mesodermal commitment and can generate functional MNs thus outlining an ethically acceptable strategy for the study and treatment of the neurodegenerative diseases.
RESUMO
Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides that are not translated into proteins. Nowadays, lncRNAs are gaining importance as key regulators of gene expression and, consequently, of several biological functions in physiological and pathological conditions, including cancer. Here, we point out the role of lncRNAs in the pathogenesis of multiple myeloma (MM). We focus on their ability to regulate the biological processes identified as "hallmarks of cancer" that enable malignant cell transformation, early tumor onset and progression. The aberrant expression of lncRNAs in MM suggests their potential use as clinical biomarkers for diagnosis, patient stratification, and clinical management. Moreover, they represent ideal candidates for therapeutic targeting.
RESUMO
Drug-resistance monitoring is one of the hardest challenges in HIV management. Next-generation sequencing (NGS) technologies speed up the detection of drug resistance, allowing the adjustment of antiretroviral therapy and enhancing the quality of life of people living with HIV. Recently, the NGS Sentosa® SQ HIV Genotyping Assay (Vela Diagnostics) received approval for in vitro diagnostics use. This work is the first Italian evaluation of the performance of the Vela Diagnostics NGS platform, assessed with 420 HIV-1 clinical samples. A comparison with Sanger sequencing performance is also reported, highlighting the advantages and disadvantages of the Sentosa® NGS assay. The precision of the technology was studied with reference specimens, while intra- and inter-assay reproducibility were evaluated for selected clinical samples. Vela Diagnostics' NGS assay reached an 87% success rate through 30 runs of analysis in a real-world clinical context. The concordance with Sanger sequencing outcomes was equal to 97.2%. Several detected mismatches were due to NGS's superior sensitivity to low-frequency variants. A high accuracy was observed in testing reference samples. Repeatability and reproducibility assays highlighted the good performance of the NGS platform. Beyond a few technical issues that call for further optimization, the key improvement will be a better balance between costs and processing speed. Once these issues have been solved, the Sentosa® SQ HIV Genotyping Assay will be the way forward for HIV resistance testing.
Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Fármacos Anti-HIV/farmacologia , Farmacorresistência Viral/genética , Genótipo , Infecções por HIV/diagnóstico , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Qualidade de Vida , RNA Viral , Reprodutibilidade dos Testes , Carga ViralRESUMO
Multiple myeloma (MM) progression and drug resistance depend on the crosstalk between MM cells and bone marrow (BM) fibroblasts (FBs). During monoclonal gammopathy of undetermined significance (MGUS) to MM transition, MM cell-derived exosomes (EXOs) reprogram the miRNA (miR) profile of FBs, inducing the overexpression miR-23b-3p, miR-27b-3p, miR-125b-5p, miR-214-3p, and miR-5100. Here, we demonstrate that the miR content of MM FB-derived EXOs (FB-EXOs) overlaps the miR profile of parental FBs by overexpressing comparable levels of miR-23b-3p, miR-27b-3p, miR-125b-5p, miR-214-3p, and miR-5100. Recipient MM cells co-cultured with MM FB-EXOs selectively overexpress only miR-214-3p and miR-5100 but not miR-23b-3p, miR-27b-3p, and miR-125b-5p, suggesting a putative selective transfer. MM cells express HOTAIR, TOB1-AS1, and MALAT1 lncRNAs. Transient transfection of MM cells with lnc·siRNAs demonstrates that HOTAIR, TOB1-AS1, and MALAT1 lncRNAs are sponges for miR-23b-3p, miR-27b-3p, and miR-125b-5p. Indeed, lncRNA knockdown significantly increased miR levels in U266 MM cells co-cultured with MM FB-EXOs. Selective miR-214-3p and miR-5100 overexpression modulates MAPK, PI3K/AKT/mTOR, and p53 pathways in MM cells. Interrogation using the DIANA tools algorithm and transient overexpression using miR mimic probes confirmed the involvement of miR-214-3p and miR-5100 and their target genes, PTEN and DUSP16, respectively, in the modulation of these intracellular pathways. Finally, the uptake of EXOs as well as miR-214-3p and miR-5100 overexpression increase MM cell proliferation and resistance to bortezomib-induced apoptosis by switching the balance between pro-/anti-apoptotic proteins. Overall, these data show that MM cells are not simply a container into which EXOs empty their cargo. On the contrary, tumour cells finely neutralize exosomal miRs via lncRNA expression to ensure their survival. © 2021 The Pathological Society of Great Britain and Ireland.
Assuntos
Exossomos , MicroRNAs , Mieloma Múltiplo , RNA Longo não Codificante , Exossomos/patologia , Fibroblastos/patologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Mieloma Múltiplo/patologia , Fosfatidilinositol 3-Quinases/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoRESUMO
The dopaminergic system (DS) is one of the most important neuromodulator systems involved in complex functions that are compromised in both autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD), conditions that frequently occur in overlap. This evidence suggests that both disorders might have common neurobiological pathways involving the DS. Therefore, the aim of this study was to examine the DRD1 and DRD2 dopamine receptor single nucleotide polymorphisms (SNPs) as potential risk factors for ASD, ADHD, and ASD/ADHD overlap. Genetic data were obtained from four groups: 75 ASD patients, 75 ADHD patients, 30 patients with ASD/ADHD overlap, and 75 healthy controls. All participants were between 2 and 17 years old. We compared the genotypic and allelic frequency of 18 SNPs among all of the study groups. Moreover, in the case of statistically significant differences, odds ratios (OR) were obtained to evaluate if the presence of SNPs might be a risk factor of developing a specific clinical phenotype. This study found that DRD1 and DRD2 receptors SNPs might be considered as potential risk factors for ASD and ADHD. However, only DRD2-12 (rs7131465) was significantly associated with a higher risk for the ASD/ADHD overlap. These data support the hypothesis of the genetic neuromodulation of the DS in the neurobiology of these conditions.
RESUMO
Cardiac stromal cells (CSCs) contain a pool of cells with supportive and paracrine functions. Various types of mesenchymal stromal cells (MSCs) can influence CSCs in the cardiac niche through their paracrine activity. Ischaemia/reperfusion (I/R) leads to cell death and reduction of the paracrine activity of CSCs. The forced co-expression of telomerase reverse transcriptase (TERT) and myocardin (MYOCD), known to potentiate anti-apoptotic, pro-survival and pro-angiogenic activities of MSCs isolated from the adipose tissue (AT-MSCs), may increase CSC survival, favouring their paracrine activities. We aimed at investigating the hypothesis that CSCs feature improved resistance to simulated I/R (SI/R) and increased commitment towards the cardiovascular lineage when preconditioned with conditioned media (CM) or extracellular vesicles (EV) released from AT-MSCs overexpressing TERT and MYOCD (T/M AT-MSCs). Murine CSCs were isolated with the cardiosphere (CSps) isolation technique. T/M AT-MSCs and their secretome improved spontaneous intracellular calcium changes and ryanodine receptor expression in aged CSps. The cytoprotective effect of AT-MSCs was tested in CSCs subjected to SI/R. SI/R induced cell death as compared to normoxia (28 ± 4 vs 10 ± 3%, P = .02). Pre-treatment with CM (15 ± 2, P = .02) or with the EV-enriched fraction (10 ± 1%, P = .02) obtained from mock-transduced AT-MSCs in normoxia reduced cell death after SI/R. The effect was more pronounced with CM (7 ± 1%, P = .01) or the EV-enriched fraction (2 ± 1%, P = .01) obtained from T/M AT-MSCs subjected to SI/R. In parallel, we observed lower expression of the apoptosis marker cleaved caspase-3 and higher expression of cardiac and vascular markers eNOS, sarcomeric α-actinin and cardiac actin. The T/M AT-MSCs secretome exerts a cytoprotective effect and promotes development of CSCs undergoing SI/R towards a cardiovascular phenotype.
Assuntos
Biomarcadores/metabolismo , Doenças Cardiovasculares/terapia , Coração/crescimento & desenvolvimento , Células-Tronco Mesenquimais/citologia , Proteínas Nucleares/metabolismo , Traumatismo por Reperfusão/complicações , Telomerase/metabolismo , Transativadores/metabolismo , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Telomerase/genética , Transativadores/genéticaRESUMO
AIM: Cell therapies are hampered by poor survival and growth of grafts. We tested whether forced co-expression of telomerase reverse transcriptase (TERT) and myocardin (MYOCD) improves post-infarct revascularization and tissue repair by adipose tissue-derived mesenchymal stromal cells (AT-MSCs). METHODS AND RESULTS: We transplanted AT-MSCs overexpressing MYOCD and TERT in a murine model of acute myocardial infarction (AMI). We characterized paracrine effects of AT-MSCs. When transplanted into infarcted hearts of C57BL/6 mice, AT-MSCs overexpressing TERT and MYOCD decreased scar tissue and the intra-scar CD3 and B220 lymphocyte infiltration; and increased arteriolar density as well as ejection fraction compared with saline or mock-transduced AT-MSCs. These effects were accompanied by higher persistence of the injected cells in the heart, increased numbers of Ki-67+ and CD117+ cells, and the expression of cardiac actin and ß-myosin heavy chain. Intramyocardial delivery of the secretome and its extracellular vesicle (EV)-enriched fraction also decreased scar tissue formation and increased arteriolar density in the murine AMI model. Proteomic analysis of AT-MSCs-EV-enriched fraction predicted the activation of vascular development and the inhibition of immune cell trafficking. Elevated concentrations of miR-320a, miR-150-5p and miR-126-3p associated with regulation of apoptosis and vasculogenesis were confirmed in the AT-MSCs-EV-enriched fraction. CONCLUSIONS: AT-MSCs overexpressing TERT and MYOCD promote persistence of transplanted aged AT-MSCs and enhance arteriolar density in a murine model of AMI. EV-enriched fraction is the component of the paracrine secretion by AT-MSCs with pro-angiogenic and anti-fibrotic activities.
Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/enzimologia , Infarto do Miocárdio/cirurgia , Miocárdio/metabolismo , Proteínas Nucleares/metabolismo , Regeneração , Telomerase/metabolismo , Transativadores/metabolismo , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Vesículas Extracelulares/enzimologia , Vesículas Extracelulares/transplante , Fibrose , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Proteínas Nucleares/genética , Comunicação Parácrina , Recuperação de Função Fisiológica , Transdução de Sinais , Telomerase/genética , Transativadores/genéticaRESUMO
MicroRNAs (miRNAs, or miRs) are single-strand short non-coding RNAs with a pivotal role in the regulation of physiological- or disease-associated cellular processes. They bind to target miRs modulating gene expression at post-transcriptional levels. Here, we present an overview of miRs deregulation in the pathogenesis of multiple myeloma (MM), and discuss the potential use of miRs/nanocarriers association in clinic. Since miRs can act as oncogenes or tumor suppressors, strategies based on their inhibition and/or replacement represent the new opportunities in cancer therapy. The miRs delivery systems include liposomes, polymers, and exosomes that increase their physical stability and prevent nuclease degradation. Phase I/II clinical trials support the importance of miRs as an innovative therapeutic approach in nanomedicine to prevent cancer progression and drug resistance. Results in clinical practice are promising.
Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Técnicas de Transferência de Genes , MicroRNAs/genética , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Nanotecnologia , Terapêutica com RNAi , Animais , Progressão da Doença , Exossomos , Regulação Neoplásica da Expressão Gênica , Humanos , Lipídeos/química , Lipossomos , Mieloma Múltiplo/patologia , Nanotecnologia/métodos , Polímeros/química , Terapêutica com RNAi/métodosRESUMO
PURPOSE: Evaluation of specific computerized posturographic parameters in patients with Menière's disease (MD) following the intratympanic injection of gadolinium, a contrast agent, used in radiological diagnosing. MATERIALS AND METHODS: We have observed 12 adult patients with unilateral Menière's Disease subjected to inner ear magnetic resonance imaging (MRI) examination after intratympanic gadolinium injection (ITG). The diagnoses have been performed according to the guidelines of the American Academy of otolaryngology. Before and after 24 h the ITG, all patients were subjected to the clinical evaluation and computerized posturography (CP), in 4 conditions depending on open/closed eyes and with/without foam cushion under feet. RESULTS: After ITG, in the affected ear the MRI confirmed the endolymphatic hydrops revealing a thin or even disappeared perilymphatic space. The statokinesigram showed improvement of stability only with closed eyes on a foam cushion. The CP performed 24 h after the contrast intratympanic injection showed a significant reduction of Path Length and Confidence Ellipse Area, due to an improvement of vestibular function on static balance. This improvement could be directly dependent to intratympanic pressure modification mediated by volume of contrast liquid, by "columella effect". CONCLUSIONS: This study demonstrates the absence of vestibular damage in patients undergoing intratympanic gadolinium infiltration and confirms the relationship between intratympanic pressure and vestibular stability modifications providing positive evidences for an applicative use of CP as a functional assessment to better address diagnosis and follow-up in MD patients treated with intratympanic injections.
Assuntos
Meios de Contraste/administração & dosagem , Orelha Interna/diagnóstico por imagem , Gadolínio/administração & dosagem , Doença de Meniere/diagnóstico por imagem , Doença de Meniere/fisiopatologia , Equilíbrio Postural , Pressão , Vestíbulo do Labirinto/fisiologia , Adulto , Idoso , Hidropisia Endolinfática/diagnóstico por imagem , Feminino , Humanos , Injeção Intratimpânica , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Membrana TimpânicaRESUMO
The treatment of cystic fibrosis (CF) patients homozygous for the F508del mutation with Orkambi®, a combination of a corrector (lumacaftor) and a potentiator (ivacaftor) of the mutated CFTR protein, resulted in some amelioration of the respiratory function. However, a great variability in the clinical response was also observed. The aim of this study was to evaluate the response to Orkambi® in a small cohort of F508del/F508del patients (n = 14) in terms of clinical and laboratory parameters, including ex vivo CFTR activity in mononuclear cells (MNCs), during a 12-month treatment. Patients responded with an increase in percent predicted forced expiratory volume in 1 s (FEV1%) and body mass index (BMI) as well as with a decrease in white blood cell (WBC) total counts and serum C-reactive protein (CRP) levels, although not significantly. Sweat chloride and CFTR-dependent chloride efflux were found to decrease and increase, respectively, as compared with pre-therapy values. CFTR and BMI showed a statistically significant correlation during Orkambi® treatment. Clustering analysis showed that CFTR, BMI, sweat chloride, FEV1%, and WBC were strongly associated. These data support the notion that CFTR-dependent chloride efflux in MNCs should be investigated as a sensitive outcome measure of Orkambi® treatment in CF patients.