Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Reprod Toxicol ; 125: 108558, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367697

RESUMO

There is growing interest in establishing alternative methods in place of conventional animal tests to assess the developmental and reproductive toxicity (DART) of chemicals. Gastruloids are 3D aggregates of pluripotent stem cells that spontaneously exhibit axial elongation morphogenesis similar to gastrulation. They have been explored as in vitro embryogenesis models for developmental and toxicological studies. Here, a mouse gastruloid-based assay was validated for DART assessment in accordance with the ICH S5(R3) guideline, which provides the plasma concentration data of various reference drugs in rodents, specifically Cmax and AUC for NOAEL and LOAEL. First, adverse effect concentrations of the reference drugs and their known metabolites on gastruloid development were determined based on morphological impact, namely reduced growth or aberrant elongation. Then, the NOAEL to LOAEL concentration range obtained from the gastruloid assay was compared with that in rodents to examine similarities in sensitivity between the in vitro and in vivo assays for each chemical. For 18 out of the 24 reference drugs that have both NOAEL and LOAEL information in rodents, the sensitivity of the gastruloid assay was comparable to the in vivo assay within an 8-fold concentration margin. For 7 out of the 8 additional reference drugs that have only NOAEL or LOAEL information in rodents, the gastruloid assay was in line with the in vivo data. Altogether, these results support the effectiveness of the gastruloid assay, which may be exploited as a non-animal alternative method for DART assessment.


Assuntos
Reprodução , Testes de Toxicidade , Camundongos , Animais , Testes de Toxicidade/métodos , Nível de Efeito Adverso não Observado , Desenvolvimento Embrionário , Gastrulação
2.
Reprod Toxicol ; 121: 108475, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37748715

RESUMO

Molnupiravir is a nucleoside analog antiviral that is authorized for use in the treatment of COVID-19. For its therapeutic action, molnupiravir is converted after ingestion to the active metabolite N4-hydroxycytidine, which is incorporated into the viral genome to cause lethal mutagenesis. Molnupiravir is not recommended for use during pregnancy, because preclinical animal studies suggest that it is hazardous to developing embryos. However, the mechanisms underlying the embryotoxicity of molnupiravir are currently unknown. To gain mechanistic insights into its embryotoxic action, the effects of molnupiravir and N4-hydroxycytidine were examined on the in vitro development of mouse preimplantation embryos. Molnupiravir did not prevent blastocyst formation even at concentrations that were much higher than the therapeutic plasma levels. By contrast, N4-hyroxycytidine exhibited potent toxicity, as it interfered with blastocyst formation and caused extensive cell death at concentrations below the therapeutic plasma levels. The adverse effects of N4-hydroxycytidine were dependent on the timing of exposure, such that treatment after the 8-cell stage, but not before it, caused embryotoxicity. Transcriptomic analysis of N4-hydroxycytidine-exposed embryos, together with the examination of eIF-2a protein phosphorylation level, suggested that N4-hydroxycytidine induced the integrated stress response. The adverse effects of N4-hydroxycytidine were significantly alleviated by the co-treatment with S-(4-nitrobenzyl)-6-thioinosine, suggesting that the embryotoxic potential of N4-hydroxycytidine requires the activity of nucleoside transporters. These findings show that the active metabolite of molnupiravir impairs preimplantation development at clinically relevant concentrations, providing mechanistic foundation for further studies on the embryotoxic potential of molnupiravir and other related nucleoside antivirals.


Assuntos
COVID-19 , Nucleosídeos , Gravidez , Feminino , Camundongos , Animais , Nucleosídeos/metabolismo , Nucleosídeos/farmacologia , Blastocisto , Hidroxilaminas/metabolismo , Hidroxilaminas/farmacologia , Antivirais/toxicidade
3.
Birth Defects Res ; 115(2): 224-239, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36349436

RESUMO

BACKGROUND: Remdesivir is an antiviral drug approved for the treatment of COVID-19, whose developmental toxicity remains unclear. More information about the safety of remdesivir is urgently needed for people of childbearing potential, who are affected by the ongoing pandemic. Morphogenetic embryoid bodies (MEBs) are three-dimensional (3D) aggregates of pluripotent stem cells that recapitulate embryonic body patterning in vitro, and have been used as effective embryo models to detect the developmental toxicity of chemical exposures specifically and sensitively. METHODS: MEBs were generated from mouse P19C5 and human H9 pluripotent stem cells, and used to examine the effects of remdesivir. The morphological effects were assessed by analyzing the morphometric parameters of MEBs after exposure to varying concentrations of remdesivir. The molecular impact of remdesivir was evaluated by measuring the transcript levels of developmental regulator genes. RESULTS: The mouse MEB morphogenesis was impaired by remdesivir at 1-8 µM. Remdesivir affected MEBs in a manner dependent on metabolic conversion, and its potency was higher than GS-441524 and GS-621763, presumptive anti-COVID-19 drugs that act similarly to remdesivir. The expressions of developmental regulator genes, particularly those involved in axial and somite patterning, were dysregulated by remdesivir. The early stage of MEB development was more vulnerable to remdesivir exposure than the later stage. The morphogenesis and gene expression profiles of human MEBs were also impaired by remdesivir at 1-8 µM. CONCLUSIONS: Remdesivir impaired mouse and human MEBs at concentrations that are comparable to the therapeutic plasma levels in humans, urging further investigation into the potential impact of remdesivir on developing embryos.


Assuntos
COVID-19 , Células-Tronco Pluripotentes , Humanos , Corpos Embrioides/metabolismo , COVID-19/metabolismo , Tratamento Farmacológico da COVID-19 , Morfogênese
4.
Reproduction ; 164(4): R75-R86, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35900353

RESUMO

In brief: Trophectoderm is the first tissue to differentiate in the early mammalian embryo and is essential for hatching, implantation, and placentation. This review article discusses the roles of Ras homolog family members (RHO) and RHO-associated coiled-coil containing protein kinases (ROCK) in the molecular and cellular regulation of trophectoderm formation. Abstract: The trophectoderm (TE) is the first tissue to differentiate during the preimplantation development of placental mammals. It constitutes the outer epithelial layer of the blastocyst and is responsible for hatching, uterine attachment, and placentation. Thus, its formation is the key initial step that enables the viviparity of mammals. Here, we first describe the general features of TE formation at the morphological and molecular levels. Prospective TE cells form an epithelial layer enclosing an expanding fluid-filled cavity by establishing the apical-basal cell polarity, intercellular junctions, microlumen, and osmotic gradient. A unique set of genes is expressed in TE that encode the transcription factors essential for the development of trophoblasts of the placenta upon implantation. TE-specific gene expressions are driven by the inhibition of HIPPO signaling, which is dependent on the prior establishment of the apical-basal polarity. We then discuss the specific roles of RHO and ROCK as essential regulators of TE formation. RHO and ROCK modulate the actomyosin cytoskeleton, apical-basal polarity, intercellular junctions, and HIPPO signaling, thereby orchestrating the epithelialization and gene expressions in TE. Knowledge of the molecular mechanisms underlying TE formation is crucial for assisted reproductive technologies in human and farm animals, as it provides foundation to help improve procedures for embryo handling and selection to achieve better reproductive outcomes.


Assuntos
Polaridade Celular , Via de Sinalização Hippo , Animais , Blastocisto/metabolismo , Polaridade Celular/fisiologia , Feminino , Expressão Gênica , Humanos , Mamíferos/genética , Morfogênese , Placenta/metabolismo , Gravidez , Estudos Prospectivos , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
5.
Dev Biol ; 488: 35-46, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35537519

RESUMO

Gastrulation is a fundamental and critical process of animal development whereby the mass of cells that results from the proliferation of the zygote transforms itself into a recognizable outline of an organism. The last few years have seen the emergence of a number of experimental models of early mammalian embryogenesis based on Embryonic Stem (ES) cells. One of this is the Gastruloid model. Gastruloids are aggregates of defined numbers of ES cells that, under defined culture conditions, undergo controlled proliferation, symmetry breaking, and the specification of all three germ layers characteristic of vertebrate embryos, and their derivatives. However, they lack brain structures and, surprisingly, reveal a disconnect between cell type specific gene expression and tissue morphogenesis, for example during somitogenesis. Gastruloids have been derived from mouse and human ES cells and several variations of the original model have emerged that reveal a hereto unknown modularity of mammalian embryos. We discuss the organization and development of gastruloids in the context of the embryonic stages that they represent, pointing out similarities and differences between the two. We also point out their potential as a reproducible, scalable and searchable experimental system and highlight some questions posed by the current menagerie of gastruloids.


Assuntos
Gastrulação , Células-Tronco Embrionárias Humanas , Animais , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Camadas Germinativas , Humanos , Mamíferos , Camundongos
6.
Reprod Toxicol ; 111: 135-147, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35605700

RESUMO

Remdesivir (RDV) is the first antiviral drug to be approved by the US Food and Drug Administration for the treatment of COVID-19. While the general safety of RDV has been studied, its reproductive risk, including embryotoxicity, is largely unknown. Here, to gain insights into its embryotoxic potential, we investigated the effects of RDV on mouse preimplantation embryos cultured in vitro at the concentrations comparable to the therapeutic plasma levels. Exposure to RDV (2-8 µM) did not affect the initiation of blastocyst formation, although the maintenance of the cavity failed at 8 µM due to increased cell death. While exposure to 2-4 µM permitted the cavity maintenance, expressions of developmental regulator genes associated with the inner cell mass (ICM) lineage were significantly diminished. Adverse effects of RDV depended on the duration and timing of exposure, as treatment between the 8-cell to early blastocyst stage most sensitively affected cavity expansion, gene expressions, and cell proliferation, particularly of the ICM than the trophectoderm lineage. GS-441524, a major metabolite of RDV, did not impair blastocyst formation or cavity expansion, although it altered gene expressions in a manner differently from RDV. Additionally, RDV reduced the viability of human embryonic stem cells, which were used as a model for the human ICM lineage, more potently than GS-441524. These findings suggest that RDV is potentially embryotoxic to impair the pluripotent lineage, and will be useful for designing and interpreting further in vitro and in vivo studies on the reproductive toxicity of RDV.


Assuntos
Tratamento Farmacológico da COVID-19 , Complicações Infecciosas na Gravidez , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Animais , Blastocisto , Desenvolvimento Embrionário/genética , Feminino , Camundongos , Gravidez , Complicações Infecciosas na Gravidez/metabolismo
7.
Birth Defects Res ; 114(16): 972-982, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35102709

RESUMO

In the past few decades, pluripotent stem cells have been explored as nonanimal alternatives to assess the developmental toxicity of chemicals. To date, numerous versions of stem cell-based assays have been reported that are allegedly effective. Nonetheless, none of the assays has become the gold standard in developmental toxicity assessment. Why? This article discusses several issues in the hope of facilitating the refinement of stem cell assays and their acceptance as the cornerstone in predictive developmental toxicology. Each stem cell assay is built on a limited representation of embryogenesis, so that multiple assays are needed to detect the diverse effects of various chemicals. To validate and compare the strengths and weaknesses of individual assays, standardized lists of reference chemicals should be established. Reference lists should consist of exposures defined by toxicokinetic data, namely maternal plasma concentrations that cause embryonic death or malformations, and also by the effects on the molecular machineries that control embryogenesis. Although not entirely replacing human or animal tests, carefully selected stem cell assays should serve as practical and ethical alternatives to proactively identify chemical exposures that disturb embryogenesis. To achieve this goal, unprecedented levels of coordination and conviction are required among research and regulatory communities.


Assuntos
Desenvolvimento Embrionário , Células-Tronco , Animais , Humanos
8.
Artigo em Inglês | MEDLINE | ID: mdl-37008716

RESUMO

Hemichordate enteropneust worms regenerate extensively in a manner that resembles the regeneration for which planaria and hydra are well known. Although hemichordates are often classified as an extant phylogenetic group that may hold ancestral deuterostome body plans at the base of the deuterostome evolutionary line leading to chordates, mammals, and humans, extensive regeneration is not known in any of these more advanced groups. Here we investigated whether hemichordates deploy functional homologs of canonical Yamanaka stem cell reprogramming factors, Oct4, Sox2, Nanog, and Klf4, as they regenerate. These reprogramming factors are not expressed during regeneration of limbs, fins, eyes or other structures that represent the best examples of regeneration in chordates. We first examined Ptychodera flava EST libraries and identified Pf-Pou3, Pf-SoxB1, Pf-Msxlx, and Pf-Klf1/2/4 as most closely related to the Yamanaka factors, respectively. In situ hybridization analyses revealed that all these homologs are expressed in a distinct manner during head regeneration. Furthermore, Pf-Pou3 partially rescued the loss of endogenous Oct4 in mouse embryonic stem cells in maintaining the pluripotency gene expression program. Based on these results, we propose that hemichordates may have co-opted these reprogramming factors for their extensive regeneration or that chordates may have lost the ability to mobilize these factors in response to damage. The robustness of these pluripotency gene circuits in the inner cell mass and in formation of induced pluripotent stem cells from mammalian somatic cells shows that these programs are intact in humans and other mammals and that these circuits may respond to as yet unknown gene regulatory signals, mobilizing full regeneration in hemichordates.

9.
Toxicol Sci ; 184(2): 191-203, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34515794

RESUMO

Dolutegravir (DTG) is an antiretroviral drug of the integrase strand transfer inhibitor (INSTI) class used to treat human immunodeficiency virus infection. It is the recommended first-line regimen for most people, including women of childbearing age. However, some human and animal studies have suggested that DTG causes birth defects, although its developmental toxicity remains controversial. Here, we investigated the adverse effects of DTG using pluripotent stem cell-based in vitro morphogenesis models that have previously been validated as effective tools to assess the developmental toxicity of various chemicals. DTG diminished the growth and axial elongation of the morphogenesis model of mouse pluripotent stem cells at exposures of 2 µM and above in a concentration-dependent manner. Concomitantly, DTG altered the expression profiles of developmental regulator genes involved in embryonic patterning. The adverse effects were observed when the morphogenesis model was exposed to DTG at early stages of development, but not at later stages. The potency and molecular impact of DTG on the morphogenesis model were distinct from other INSTIs. Last, DTG altered the growth and gene expression profiles of the morphogenesis model of human embryonic stem cells at 1 µM and above. These studies demonstrate that DTG impairs morphological and molecular aspects of the in vitro morphogenesis models in a manner dependent on dose and timing of exposure through mechanisms that are unrelated to its action as an INSTI. This finding will be useful for interpreting the conflicting outcomes regarding the developmental toxicity of DTG in human and animal studies.


Assuntos
Inibidores de Integrase de HIV , Animais , Feminino , Inibidores de Integrase de HIV/uso terapêutico , Inibidores de Integrase de HIV/toxicidade , Compostos Heterocíclicos com 3 Anéis/toxicidade , Humanos , Camundongos , Morfogênese , Oxazinas , Piperazinas , Piridonas , Células-Tronco
10.
Mol Hum Reprod ; 27(4)2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33677573

RESUMO

Early embryos are vulnerable to environmental insults, such as medications taken by the mother. Due to increasing prevalence of hypercholesterolemia, more women of childbearing potential are taking cholesterol-lowering medications called statins. Previously, we showed that inhibition of the mevalonate pathway by statins impaired mouse preimplantation development, by modulating HIPPO signaling, a key regulator for trophectoderm (TE) lineage specification. Here, we further evaluated molecular events that are altered by mevalonate pathway inhibition during the timeframe of morphogenesis and cell lineage specification. Whole transcriptome analysis revealed that statin treatment dysregulated gene expression underlying multiple processes, including cholesterol biosynthesis, HIPPO signaling, cell lineage specification and endoplasmic reticulum (ER) stress response. We explored mechanisms that link the mevalonate pathway to ER stress, because of its potential impact on embryonic health and development. Upregulation of ER stress-responsive genes was inhibited when statin-treated embryos were supplemented with the mevalonate pathway product, geranylgeranyl pyrophosphate (GGPP). Inhibition of geranylgeranylation was sufficient to upregulate ER stress-responsive genes. However, ER stress-responsive genes were not upregulated by inhibition of ras homolog family member A (RHOA), a geranylgeranylation target, although it interfered with TE specification and blastocyst cavity formation. In contrast, inhibition of Rac family small GTPase 1 (RAC1), another geranylgeranylation target, upregulated ER stress-responsive genes, while it did not impair TE specification or cavity formation. Thus, our study suggests that the mevalonate pathway regulates cellular homeostasis (ER stress repression) and differentiation (TE lineage specification) in preimplantation embryos through GGPP-dependent activation of two distinct small GTPases, RAC1 and RHOA, respectively. Translation of the findings to human embryos and clinical settings requires further investigations.


Assuntos
Estresse do Retículo Endoplasmático , Ácido Mevalônico , Animais , Blastocisto/metabolismo , Linhagem da Célula , Embrião de Mamíferos , Desenvolvimento Embrionário/fisiologia , Estresse do Retículo Endoplasmático/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Ácido Mevalônico/farmacologia , Camundongos
11.
Birth Defects Res ; 112(14): 1043-1056, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32496642

RESUMO

BACKGROUND: Teratogenic potential has been linked to various industrial compounds. Methoxyacetic acid (MAA) is a primary metabolite of the widely used organic solvent and plasticizer, methoxyethanol and dimethoxyethyl phthalate, respectively. Studies using model animals have shown that MAA acts as the proximate teratogen that causes various malformations in developing embryos. Nonetheless, the molecular mechanisms by which MAA exerts its teratogenic effects are not fully understood. METHODS: Gastruloids of mouse P19C5 pluripotent stem cells, which recapitulate axial elongation morphogenesis of gastrulation-stage embryos, were explored as an in vitro model to investigate the teratogenic action of MAA. Morphometric parameters of gastruloids were measured to evaluate the morphogenetic effect, and transcript levels of various developmental regulator genes were examined to assess the impact on gene expression patterns. The effects of MAA on the level of retinoic acid (RA) signaling and histone deacetylase activity were also measured. RESULTS: MAA reduced axial elongation of gastruloids at concentrations comparable to the teratogenic plasma level (5 mM) in vivo. MAA at 4 mM significantly altered the expression profiles of developmental regulator genes. In particular, it upregulated the RA signaling target genes. The concomitant suppression of RA signaling using a pharmacological agent alleviated the morphogenetic effect of MAA. MAA at 4 mM also significantly reduced the activity of purified histone deacetylase protein. CONCLUSIONS: MAA impaired axial elongation morphogenesis in a RA signaling-dependent manner in mouse gastruloids, possibly through the inhibition of histone deacetylase.


Assuntos
Histona Desacetilases , Tretinoína , Acetatos , Animais , Gastrulação , Camundongos
12.
Reprod Toxicol ; 91: 74-91, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31711903

RESUMO

Pluripotent stem cells recapitulate many aspects of embryogenesis in vitro. Here, we established a novel culture system to differentiate human embryonic stem cell aggregates (HESCA), and evaluated its utility for teratogenicity assessment. Culture of HESCA with modulators of developmental signals induced morphogenetic and molecular changes associated with differentiation of the paraxial mesoderm and neuroectoderm. To examine impact of teratogenic exposures on HESCA differentiation, 18 compounds were tested, for which adequate information on in vivo plasma concentrations is available. HESCA treated with each compound were examined for gross morphology and transcript levels of 15 embryogenesis regulator genes. Significant alterations in the transcript levels were observed for 94% (15/16) of the teratogenic exposures within 5-fold margin, whereas no alteration was observed for 92% (11/12) of the non-teratogenic exposures. Our study demonstrates that transcriptional changes in HESCA serve as predictive indicator of teratogenicity in a manner comparable to in vivo exposure levels.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Teratogênicos/toxicidade , Agregação Celular , Diferenciação Celular , Células Cultivadas , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Teratogênese
13.
Mol Hum Reprod ; 25(2): 43-60, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30395288

RESUMO

STUDY QUESTION: What molecular signals are required to maintain the functional trophectoderm (TE) during blastocyst expansion of the late stage of preimplantation development? SUMMARY ANSWER: The activity of ras homology family member A (RHOA) GTPases is necessary to retain the expanded blastocyst cavity and also to sustain the gene expression program specific to TE. WHAT IS KNOWN ALREADY: At the early stages of preimplantation development, the precursor of the TE lineage is generated through the molecular signals that integrate RHOA, RHO-associated coiled-coil containing protein kinase (ROCK), the apicobasal cell polarity, and the HIPPO-Yes-associated protein (YAP) signaling pathway. By contrast, molecular mechanisms regulating the maintenance of the TE characteristics at the later stage, which is crucial for blastocyst hatching and implantation, are scarcely understood. STUDY DESIGN, SIZE, DURATION: Expanding mouse blastocysts, obtained from crosses of the F1 (C57BL6 × DBA/2) strain, were exposed to chemical agents that interfere with RHOA, ROCK, or the actin cytoskeleton for up to 8 h, and effects on the blastocyst cavity, HIPPO-YAP signaling, and cell lineage-specific gene expression profiles were examined. PARTICIPANTS/MATERIALS, SETTING, METHODS: Mouse embryos at the embryonic stage E3.5 (expanding blastocysts) and E4.5 (fully expanded blastocysts) were treated with RHOA inhibitor (C3 exoenzyme), ROCK inhibitor (Y27632), or actin filament disruptors (cytochalasin B and latrunculin A). The integrity of the blastocyst cavity was evaluated based on the gross morphology. Effects on HIPPO-YAP signaling were assessed based on the presence of nuclearized YAP protein by immunofluorescence staining and the expression of YAP/TEA domain family member (TEAD) target genes by quantitative RT-PCR (qRT-PCR). The impact of these disruptors on cell lineages was evaluated based on expression of the TE-specific and inner cell mass-specific marker genes by qRT-PCR. The integrity of the apicobasal cell polarity was assessed by localization of protein kinase C zeta (PRKCZ; apical) and scribbled planar cell polarity (SCRIB; basal) proteins by immunofluorescence staining. For comparisons, cultured cell lines, NIH/3T3 (mouse fibroblast) and P19C5 (mouse embryonal carcinoma), were also treated with RHOA inhibitor, ROCK inhibitor, and actin filament disruptors for up to 8 h, and effects on HIPPO-YAP signaling were assessed based on expression of YAP/TEAD target genes by qRT-PCR. Each experiment was repeated using three independent batches of embryos (n = 40-80 per batch) or cell collections. Statistical analyses of data were performed, using one-way ANOVA and two-sample t-test. MAIN RESULTS AND THE ROLE OF CHANCE: Inhibition of RHOA deflated the cavity, diminished nuclear YAP (P < 0.01), and down-regulated the YAP/TEAD target and TE-specific marker genes in both E3.5 and E4.5 blastocysts (P < 0.05), indicating that the maintenance of the key TE characteristics is dependent on RHOA activity. However, inhibition of ROCK or disruption of actin filament only deflated the blastocyst cavity, but did not alter HIPPO-YAP signaling or lineage-specific gene expressions, suggesting that the action of RHOA to sustain the TE-specific gene expression program is not mediated by ROCK or the actomyosin cytoskeleton. By contrast, ROCK inhibitor and actin filament disruptors diminished YAP/TEAD target gene expressions in cultured cells to a greater extent than RHOA inhibitor, implicating that the regulation of HIPPO-YAP signaling in expanding blastocysts is distinctly different from that in the cell lines. Furthermore, the apicobasal cell polarity proteins in the expanding blastocyst were mislocalized by ROCK inhibition but not by RHOA inhibition, indicating that cell polarity is not linked to regulation of HIPPO-YAP signaling. Taken together, our study suggests that RHOA activity is essential to maintain the TE lineage in the expanding blastocyst and it regulates HIPPO-YAP signaling and the lineage-specific gene expression program through mechanisms that are independent of ROCK or actomyosin cytoskeleton. LARGE-SCALE DATA: Not applicable. LIMITATIONS, REASONS FOR CAUTION: This study was conducted using one species, the mouse. Direct translation of the experiments and findings to human fertility preservation and ART requires further investigations. WIDER IMPLICATIONS OF THE FINDINGS: The elucidation of the mechanisms of TE formation is highly pertinent to fertility preservation in women. Our findings may raise awareness among providers of ART that the TE is sensitive to disturbance even in the late stage of blastocyst expansion and that rational approaches should be devised to avoid conditions that may impair the TE and its function. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by grants from the Ingeborg v.F. McKee Fund of the Hawaii Community Foundation (16ADVC-78882 to V.B.A.), and the National Institutes of Health (P20 GM103457 and R03 HD088839 to V.B.A.). The authors have no conflict of interest to declare.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Blastocisto/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Feminino , Via de Sinalização Hippo , Camundongos , Microscopia Confocal , Células NIH 3T3 , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteínas de Sinalização YAP , Proteína rhoA de Ligação ao GTP/genética
14.
Toxicol Appl Pharmacol ; 355: 211-225, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29990529

RESUMO

Developmental toxicity of compounds, which women of reproductive age are exposed to, should be assessed to minimize the incidence of miscarriage and birth defects. The present study examined the potential developmental toxicity of resveratrol, a dietary supplement widely marketed with various health claims, using the P19C5 embryoid body (EB) morphogenesis assay, which evaluates adverse effects of chemical exposures on tissue growth and axial elongation. Resveratrol (trans isoform) impaired morphogenesis at 4 µM and higher, creating smaller and rounder EBs, whereas cis isoform, and glucuronated and sulfonated metabolites did not. Trans-resveratrol also altered expression levels of developmental regulator genes involved in embryonic patterning, such as Wnt3a, Tbx6, and Cyp26a1. To investigate the mechanisms of trans-resveratrol action, the roles of estrogen receptor, sirtuin 1 (SIRT1), and DNA replication in EB morphogenesis were examined. Neither activators of estrogen receptors (diethylstilbestrol [18 µM] and raloxifene [8 µM]) nor activator of SIRT1 (SRT1720 [2.4-3.2 µM]) caused morphological and molecular alterations that are comparable to trans-resveratrol (10 µM). By contrast, a reduction in the DNA replication rate with aphidicolin (0.4 µM) or hydroxyurea (40 µM) created smaller and rounder EBs and altered the expression levels of Wnt3a, Tbx6, and Cyp26a1 in a manner similar to trans-resveratrol. Consistently, trans-resveratrol significantly reduced the rate of EdU incorporation in P19C5 cells. These results suggest that a reduction in the DNA replication rate is one of the mechanisms by which trans-resveratrol impacts EB development. This study provides mechanistic insight for further investigations on the developmental toxicity of trans-resveratrol.


Assuntos
Suplementos Nutricionais/toxicidade , Corpos Embrioides/efeitos dos fármacos , Resveratrol/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Corpos Embrioides/ultraestrutura , Desenvolvimento Embrionário/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Morfogênese/efeitos dos fármacos , Receptores de Estrogênio/efeitos dos fármacos , Sirtuína 1/efeitos dos fármacos , Estereoisomerismo
15.
Toxicol Sci ; 165(2): 372-388, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29893963

RESUMO

Fluoxetine is one of the most commonly prescribed antidepressants in the selective serotonin reuptake inhibitor (SSRI) class. Epidemiologic studies have suggested a link between maternal fluoxetine use during pregnancy and an increased incidence of birth defects. However, the mechanisms by which fluoxetine adversely impacts embryonic developments are unknown. Here, we used the mouse P19C5 embryoid body (EB) as a 3D morphogenesis model to investigate the developmental toxicity of fluoxetine. Morphological and molecular changes in P19C5 EBs replicate the processes of axial elongation and patterning seen in early embryos, and these changes are specifically and sensitively altered by exposure to developmental toxicants. Treatment with fluoxetine, or its major metabolite, norfluoxetine, adversely affected EB morphogenesis at concentrations of 6 µM and above. Treatment with other serotonin reuptake inhibitors or serotonin itself did not impair EB morphogenesis, suggesting that the adverse effects of fluoxetine are independent of serotonin signaling. Gene expression analyses showed that various key developmental regulators were affected by fluoxetine, particularly those involved in mesodermal differentiation. Reporter assays demonstrated that fluoxetine inhibited canonical Wnt signaling, and that the pharmacologic activation of canonical Wnt signaling partially alleviated the morphogenetic effects of fluoxetine. Fluoxetine also exhibited cytostatic effects independently of inhibition of the serotonin transporter or canonical Wnt signaling. These results suggest that the SSRI-independent actions of fluoxetine, namely inhibition of canonical Wnt signaling and reduction of cellular proliferation, are largely responsible for the observed adverse morphogenetic impacts. This study provides mechanistic insight for further investigations on the teratogenicity of fluoxetine.


Assuntos
Antidepressivos/toxicidade , Corpos Embrioides/efeitos dos fármacos , Fluoxetina/toxicidade , Morfogênese/efeitos dos fármacos , Teratogênicos/toxicidade , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Corpos Embrioides/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Camundongos , Modelos Biológicos , Morfogênese/genética , Via de Sinalização Wnt/genética
16.
Adv Anat Embryol Cell Biol ; 229: 47-68, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29177764

RESUMO

In placental mammalian development, the first cell differentiation produces two distinct lineages that emerge according to their position within the embryo: the trophectoderm (TE, placenta precursor) differentiates in the surface, while the inner cell mass (ICM, fetal body precursor) forms inside. Here, we discuss how such position-dependent lineage specifications are regulated by the RHOA subfamily of small GTPases and RHO-associated coiled-coil kinases (ROCK). Recent studies in mouse show that activities of RHO/ROCK are required to promote TE differentiation and to concomitantly suppress ICM formation. RHO/ROCK operate through the HIPPO signaling pathway, whose cell position-specific modulation is central to establishing unique gene expression profiles that confer cell fate. In particular, activities of RHO/ROCK are essential in outside cells to promote nuclear localization of transcriptional co-activators YAP/TAZ, the downstream effectors of HIPPO signaling. Nuclear localization of YAP/TAZ depends on the formation of apicobasal polarity in outside cells, which requires activities of RHO/ROCK. We propose models of how RHO/ROCK regulate lineage specification and lay out challenges for future investigations to deepen our understanding of the roles of RHO/ROCK in preimplantation development. Finally, as RHO/ROCK may be inhibited by certain pharmacological agents, we discuss their potential impact on human preimplantation development in relation to fertility preservation in women.


Assuntos
Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Quinases Associadas a rho , Animais , Blastocisto , Diferenciação Celular , Embrião de Mamíferos , Feminino , Camundongos , Gravidez , Transdução de Sinais , Quinases Associadas a rho/metabolismo
17.
Food Chem Toxicol ; 109(Pt 1): 376-385, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28927898

RESUMO

Various chemical compounds can inflict developmental toxicity when sufficiently high concentrations are exposed to embryos at the critical stages of development. Excipients, such as coloring agents and preservatives, are pharmacologically inactive ingredients that are included in various medications, foods, and cosmetics. However, concentrations that may adversely affect embryo development are largely unknown for most excipients. Here, the lowest observed adverse effect level (LOAEL) to inflict developmental toxicity was assessed for three coloring agents (allura red, brilliant blue, and tartrazine) and three preservatives (butylated hydroxyanisole, metabisulfite, and methylparaben). Adverse impact of a compound exposure was determined using the stem cell-based in vitro morphogenesis model, in which three-dimensional cell aggregates, or embryoid bodies (EBs), recapitulate embryonic processes of body axis elongation and patterning. LOAEL to impair EB morphogenesis was 200 µM for methylparaben, 400 µM for butylated hydroxyanisole, 600 µM for allura red and brilliant blue, and 1000 µM for metabisulfite. Gene expression analyses of excipient-treated EBs revealed that butylated hydroxyanisole and methylparaben significantly altered profiles of developmental regulators involved in axial elongation and patterning of the body. The present study may provide a novel in vitro approach to investigate potential developmental toxicity of common excipients with mechanistic insights.


Assuntos
Corantes/toxicidade , Desenvolvimento Embrionário/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Excipientes/toxicidade , Conservantes Farmacêuticos/toxicidade , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Camundongos
18.
Toxicol Sci ; 157(1): 235-245, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28184906

RESUMO

Establishment of effective non-animal alternatives for developmental toxicity screening assays is desirable to ensure maternal and fetal health outcomes. Validation of such assays requires a comparison between the in vitro responses to chemical exposures and the in vivo impacts of the corresponding compounds at equivalent concentrations. Here, we investigated how the P19C5 gastrulation model responds to 24 compounds at specific concentrations, some of which are categorized as positive exposures based on previously observed detrimental effects on development in vivo, whereas others are categorized as negative exposures due to lack of effects in vivo. The P19C5 gastrulation model consists of in vitro morphogenesis of mouse stem cells aggregated into embryoid bodies (EBs), which recapitulates growth and axial elongation of early embryos during four days of three-dimensional culture. Adverse impacts of chemical exposures were defined as: death, impaired growth, and altered axial elongation of EBs. Ten out of 17 positive exposures caused adverse impacts on EBs. In contrast, only three out of 17 negative exposures adversely affected EBs, although two of the three diminished viability of somatic cell lines (NIH/3T3, HEK293, and JEG3), suggesting general cytotoxicity. Overall, the study showed that 24 out of 34 exposures impacted EB development in a manner concordant with the in vivo developmental effects. Validation of other alternative assays using the same set of chemical exposures will provide information on the strengths and weaknesses of each assay, and should help determine the most effective ensemble of assays to detect a wide range of developmentally toxic exposures.


Assuntos
Gastrulação/efeitos dos fármacos , Modelos Animais , Teratogênicos/toxicidade , Testes de Toxicidade , Animais , Corpos Embrioides/efeitos dos fármacos , Técnicas In Vitro , Camundongos
19.
Reprod Toxicol ; 66: 68-83, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27693483

RESUMO

Valproic acid (VPA), an antiepileptic drug, is a teratogen that causes neural tube and axial skeletal defects, although the mechanisms are not fully understood. We previously established a gastrulation model using mouse P19C5 stem cell embryoid bodies (EBs), which exhibits axial patterning and elongation morphogenesis in vitro. Here, we investigated the effects of VPA on the EB axial morphogenesis to gain insights into its teratogenic mechanisms. Axial elongation and patterning of EBs were inhibited by VPA at therapeutic concentrations. VPA elevated expression levels of various developmental regulators, including Cdx1 and Hoxa1, known transcriptional targets of retinoic acid (RA) signaling. Co-treatment of EBs with VPA and BMS493, an RA receptor antagonist, partially rescued axial elongation as well as gene expression profiles. These results suggest that VPA requires active RA signaling to interfere with EB morphogenesis.


Assuntos
Anticonvulsivantes/toxicidade , Corpos Embrioides/efeitos dos fármacos , Gastrulação/efeitos dos fármacos , Teratogênicos/toxicidade , Tretinoína/metabolismo , Ácido Valproico/toxicidade , Animais , Benzoatos/farmacologia , Linhagem Celular Tumoral , Corpos Embrioides/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Histona Desacetilases/metabolismo , Camundongos , Receptores do Ácido Retinoico/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Estilbenos/farmacologia , Transcriptoma/efeitos dos fármacos
20.
Mol Hum Reprod ; 22(5): 350-63, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26908642

RESUMO

STUDY HYPOTHESIS: Statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase of the mevalonate pathway and prescription drugs that treat hypercholesterolemia, compromise preimplantation mouse development via modulation of HIPPO signaling. STUDY FINDING: HMG-CoA reductase activity is required for trophectoderm specification, namely blastocyst cavity formation and Yes-associated protein (YAP) nuclear localization, through the production of isoprenoid geranylgeranyl pyrophosphate (GGPP) and the action of geranylgeranyl transferase. WHAT IS KNOWN ALREADY: Previous studies have shown that treatment of mouse embryos with mevastatin prevents blastocyst formation, but how HMG-CoA reductase is involved in preimplantation development is unknown. HIPPO signaling regulates specification of the trophectoderm lineage of the mouse blastocyst by controlling the nuclear localization of YAP. In human cell lines, the mevalonate pathway regulates YAP to mediate self-renewal and survival through geranylgeranylation of RHO proteins. These studies suggest that in preimplantation development, statins may act through HIPPO pathway to interfere with trophectoderm specification and thereby inhibit blastocyst formation. STUDY DESIGN, SAMPLES/MATERIALS, METHODS: Eight-cell stage (E2.5) mouse embryos were treated in hanging drop culture with chemical agents, namely statins (lovastatin, atorvastatin, cerivastatin and pravastatin), mevalonic acid (MVA), cholesterol, squalene, farnesyl pyrophosphate (FPP), geranylgeranyl pyrophosphate (GGPP), geranylgeranyltransferase inhibitor GGTI-298, RHO inhibitor I, and squalene synthase inhibitor YM-53601, up to the late blastocyst stage (E4.5). Efficiency of blastocyst formation was assessed based on gross morphology and the measurement of the cavity size using an image analysis software. Effects on cell lineages and HIPPO signaling were analyzed using immunohistochemistry with confocal microscopy based on the expression patterns of the lineage-specific markers and the nuclear accumulation of YAP. Effects on cell lineages were also examined by quantitative RT-PCR based on the transcript levels of the lineage-specific marker genes. Data were analyzed using one-way ANOVA and two-sample t-test. MAIN RESULTS AND THE ROLE OF CHANCE: All four statins examined inhibited blastocyst formation. The adverse impact of statins was rescued by supplementation of MVA (P < 0.01) or GGPP (P < 0.01) but not squalene nor cholesterol. Blastocyst formation was also prevented by GGTI-298 (P < 0.01). These results indicate that HMG-CoA reductase activity is required for blastocyst formation mainly through the production of GGPP but not cholesterol. Inhibition of RHO proteins, known targets of geranylgeranylation, impaired blastocyst formation, which was not reversed by GGPP supplementation. Nuclear localization of YAP was diminished by statin treatment but fully restored by supplementation of MVA (P < 0.01) or GGPP (P < 0.01). This suggests that HIPPO signaling is regulated by GGPP-dependent mechanisms, possibly geranylgeranylation of RHO, to enable trophectoderm formation. YM-53601 prevented blastocyst formation (P < 0.01), but its adverse impact was not rescued by supplementation of squalene or cholesterol, suggesting that squalene synthesis inhibition was not the cause of blastocyst defects. LIMITATIONS, REASONS FOR CAUTION: Analyses were conducted on embryos cultured ex vivo, but they enable the determination of specific concentrations that impair embryo development which can be compared with drug concentrations in the reproductive tract when testing in vivo impact of statins through animal experimentations. Also, analyses were conducted in only one species, the mouse. Epidemiological studies on the effects of various types of statins on the fertility of women are necessary. WIDER IMPLICATIONS OF THE FINDINGS: Our study reveals how the mevalonate pathway is required for blastocyst formation and intersects with HIPPO pathway to provide a mechanistic basis for the embryotoxic effect of statins. This bears relevance for women who are taking statins while trying to conceive, since statins have potential to prevent the conceptus from reaching the blastocyst stage and to cause early conceptus demise. LARGE SCALE DATA: Not applicable. STUDY FUNDING AND COMPETING INTERESTS: This study was supported by grants from the George F. Straub Trust of the Hawaii Community Foundation (13ADVC-60315 to V.B.A.) and the National Institutes of Health, USA (P20GM103457 to V.B.A.). The authors have no conflict of interest to declare.


Assuntos
Blastocisto/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Prenilação/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Benzamidas/farmacologia , Blastocisto/efeitos dos fármacos , Proteínas de Ciclo Celular , Feminino , Lovastatina/análogos & derivados , Lovastatina/farmacologia , Masculino , Ácido Mevalônico/farmacologia , Camundongos , Fosfoproteínas/metabolismo , Fosfatos de Poli-Isoprenil/farmacologia , Pravastatina/farmacologia , Quinuclidinas/farmacologia , Sesquiterpenos/farmacologia , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA