Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
2.
PLoS Pathog ; 19(3): e1011261, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36928686

RESUMO

Invasion of host cells by apicomplexan parasites such as Toxoplasma and Plasmodium spp requires the sequential secretion of the parasite apical organelles, the micronemes and the rhoptries. The claudin-like apicomplexan microneme protein (CLAMP) is a conserved protein that plays an essential role during invasion by Toxoplasma gondii tachyzoites and in Plasmodium falciparum asexual blood stages. CLAMP is also expressed in Plasmodium sporozoites, the mosquito-transmitted forms of the malaria parasite, but its role in this stage is still unknown. CLAMP is essential for Plasmodium blood stage growth and is refractory to conventional gene deletion. To circumvent this obstacle and study the function of CLAMP in sporozoites, we used a conditional genome editing strategy based on the dimerisable Cre recombinase in the rodent malaria model parasite P. berghei. We successfully deleted clamp gene in P. berghei transmission stages and analyzed the functional consequences on sporozoite infectivity. In mosquitoes, sporozoite development and egress from oocysts was not affected in conditional mutants. However, invasion of the mosquito salivary glands was dramatically reduced upon deletion of clamp gene. In addition, CLAMP-deficient sporozoites were impaired in cell traversal and productive invasion of mammalian hepatocytes. This severe phenotype was associated with major defects in gliding motility and with reduced shedding of the sporozoite adhesin TRAP. Expansion microscopy revealed partial colocalization of CLAMP and TRAP in a subset of micronemes, and a distinct accumulation of CLAMP at the apical tip of sporozoites. Collectively, these results demonstrate that CLAMP is essential across invasive stages of the malaria parasite, and support a role of the protein upstream of host cell invasion, possibly by regulating the secretion or function of adhesins in Plasmodium sporozoites.


Assuntos
Culicidae , Malária , Animais , Esporozoítos/metabolismo , Micronema , Plasmodium berghei/fisiologia , Proteínas de Protozoários/metabolismo , Culicidae/parasitologia , Mamíferos , Malária/parasitologia
3.
iScience ; 26(2): 106056, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36761022

RESUMO

Plasmodium sporozoites are transmitted to a mammalian host during blood feeding by an infected mosquito and invade hepatocytes for initial replication of the parasite into thousands of erythrocyte-invasive merozoites. Here we report that the B9 protein, a member of the 6-cysteine domain protein family, is secreted from sporozoite micronemes and is required for productive invasion of hepatocytes. The N-terminus of B9 forms a beta-propeller domain structurally related to CyRPA, a cysteine-rich protein forming an essential invasion complex in Plasmodium falciparum merozoites. The beta-propeller domain of B9 is essential for sporozoite infectivity and interacts with the 6-cysteine proteins P36 and P52 in a heterologous expression system. Our results suggest that, despite using distinct sets of parasite and host entry factors, Plasmodium sporozoites and merozoites may share common structural modules to assemble protein complexes for invasion of host cells.

4.
PLoS Pathog ; 18(6): e1010643, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35731833

RESUMO

Plasmodium sporozoites that are transmitted by blood-feeding female Anopheles mosquitoes invade hepatocytes for an initial round of intracellular replication, leading to the release of merozoites that invade and multiply within red blood cells. Sporozoites and merozoites share a number of proteins that are expressed by both stages, including the Apical Membrane Antigen 1 (AMA1) and the Rhoptry Neck Proteins (RONs). Although AMA1 and RONs are essential for merozoite invasion of erythrocytes during asexual blood stage replication of the parasite, their function in sporozoites was still unclear. Here we show that AMA1 interacts with RONs in mature sporozoites. By using DiCre-mediated conditional gene deletion in P. berghei, we demonstrate that loss of AMA1, RON2 or RON4 in sporozoites impairs colonization of the mosquito salivary glands and invasion of mammalian hepatocytes, without affecting transcellular parasite migration. Three-dimensional electron microscopy data showed that sporozoites enter salivary gland cells through a ring-like structure and by forming a transient vacuole. The absence of a functional AMA1-RON complex led to an altered morphology of the entry junction, associated with epithelial cell damage. Our data establish that AMA1 and RONs facilitate host cell invasion across Plasmodium invasive stages, and suggest that sporozoites use the AMA1-RON complex to efficiently and safely enter the mosquito salivary glands to ensure successful parasite transmission. These results open up the possibility of targeting the AMA1-RON complex for transmission-blocking antimalarial strategies.


Assuntos
Anopheles , Plasmodium , Animais , Feminino , Anopheles/parasitologia , Mamíferos , Merozoítos/metabolismo , Plasmodium/metabolismo , Plasmodium berghei/genética , Proteínas de Protozoários/metabolismo , Esporozoítos/metabolismo
5.
Proteomics ; 21(6): e2000305, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33452840

RESUMO

Sporozoites of the malaria parasite Plasmodium are transmitted by mosquitoes and infect the liver for an initial and obligatory round of replication, before exponential multiplication in the blood and onset of the disease. Sporozoites and liver stages provide attractive targets for malaria vaccines and prophylactic drugs. In this context, defining the parasite proteome is important to explore the parasite biology and to identify potential targets for antimalarial strategies. Previous studies have determined the total proteome of sporozoites from the two main human malaria parasites, P. falciparum and P. vivax, as well as P. yoelii, which infects rodents. Another murine malaria parasite, P. berghei, is widely used to investigate the parasite biology. However, a deep view of the proteome of P. berghei sporozoites is still missing. To fill this gap, we took advantage of the highly sensitive timsTOF PRO mass spectrometer, combined with three alternative methods for sporozoite purification, to identify the proteome of P. berghei sporozoites using low numbers of parasites. This study provides a reference proteome for P. berghei sporozoites, identifying a core set of proteins expressed across species, and illustrates how the unprecedented sensitivity of the timsTOF PRO system enables deep proteomic analysis from limited sample amounts.


Assuntos
Plasmodium berghei , Esporozoítos , Animais , Espectrometria de Mobilidade Iônica , Camundongos , Proteoma , Proteômica
6.
Mol Microbiol ; 115(5): 870-881, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33191548

RESUMO

Parasites of the genus Plasmodium, the etiological agent of malaria, are transmitted through the bite of anopheline mosquitoes, which deposit sporozoites into the host skin. Sporozoites migrate through the dermis, enter the bloodstream, and rapidly traffic to the liver. They cross the liver sinusoidal barrier and traverse several hepatocytes before switching to productive invasion of a final one for replication inside a parasitophorous vacuole. Cell traversal and productive invasion are functionally independent processes that require proteins secreted from specialized secretory organelles known as micronemes. In this review, we summarize the current understanding of how sporozoites traverse through cells and productively invade hepatocytes, and discuss the role of environmental sensing in switching from a migratory to an invasive state. We propose that timely controlled secretion of distinct microneme subsets could play a key role in successful migration and infection of hepatocytes. A better understanding of these essential biological features of the Plasmodium sporozoite may contribute to the development of new strategies to fight against the very first and asymptomatic stage of malaria.


Assuntos
Hepatócitos/parasitologia , Malária/parasitologia , Plasmodium/fisiologia , Esporozoítos/fisiologia , Animais , Humanos , Fígado/parasitologia , Plasmodium/genética , Plasmodium/crescimento & desenvolvimento , Esporozoítos/genética , Esporozoítos/crescimento & desenvolvimento
7.
Sci Rep ; 10(1): 13509, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782257

RESUMO

Sporozoite forms of the Plasmodium parasite, the causative agent of malaria, are transmitted by mosquitoes and first infect the liver for an initial round of replication before parasite proliferation in the blood. The molecular mechanisms involved during sporozoite invasion of hepatocytes remain poorly understood. Two receptors of the Hepatitis C virus (HCV), the tetraspanin CD81 and the scavenger receptor class B type 1 (SR-B1), play an important role during the entry of Plasmodium sporozoites into hepatocytes. In contrast to HCV entry, which requires both CD81 and SR-B1 together with additional host factors, CD81 and SR-B1 operate independently during malaria liver infection. Sporozoites from human-infecting P. falciparum and P. vivax rely respectively on CD81 or SR-B1. Rodent-infecting P. berghei can use SR-B1 to infect host cells as an alternative pathway to CD81, providing a tractable model to investigate the role of SR-B1 during Plasmodium liver infection. Here we show that mouse SR-B1 is less functional as compared to human SR-B1 during P. berghei infection. We took advantage of this functional difference to investigate the structural determinants of SR-B1 required for infection. Using a structure-guided strategy and chimeric mouse/human SR-B1 constructs, we could map the functional region of human SR-B1 within apical loops, suggesting that this region of the protein may play a crucial role for interaction of sporozoite ligands with host cells and thus the very first step of Plasmodium infection.


Assuntos
Antígenos CD36/metabolismo , Hepatócitos/metabolismo , Hepatócitos/parasitologia , Plasmodium/fisiologia , Esporozoítos/fisiologia , Sequência de Aminoácidos , Animais , Antígenos CD36/química , Humanos , Camundongos , Modelos Moleculares , Domínios Proteicos , Tetraspanina 28/metabolismo
8.
Front Cell Infect Microbiol ; 10: 618430, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585284

RESUMO

Plasmodium sporozoites are transmitted to mammals by anopheline mosquitoes and first infect the liver, where they transform into replicative exoerythrocytic forms, which subsequently release thousands of merozoites that invade erythrocytes and initiate the malaria disease. In some species, sporozoites can transform into dormant hypnozoites in the liver, which cause malaria relapses upon reactivation. Transmission from the insect vector to a mammalian host is a critical step of the parasite life cycle, and requires tightly regulated gene expression. Sporozoites are formed inside oocysts in the mosquito midgut and become fully infectious after colonization of the insect salivary glands, where they remain quiescent until transmission. Parasite maturation into infectious sporozoites is associated with reprogramming of the sporozoite transcriptome and proteome, which depends on multiple layers of transcriptional and post-transcriptional regulatory mechanisms. An emerging scheme is that gene expression in Plasmodium sporozoites is controlled by alternating waves of transcription activity and translational repression, which shape the parasite RNA and protein repertoires for successful transition from the mosquito vector to the mammalian host.


Assuntos
Anopheles , Malária , Plasmodium , Animais , Regulação da Expressão Gênica , Insetos Vetores , Plasmodium/genética , Proteínas de Protozoários/genética , Esporozoítos
9.
PLoS Pathog ; 14(7): e1007111, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30024968

RESUMO

Hepatitis C virus (HCV) and the malaria parasite Plasmodium use the membrane protein CD81 to invade human liver cells. Here we mapped 33 host protein interactions of CD81 in primary human liver and hepatoma cells using high-resolution quantitative proteomics. In the CD81 protein network, we identified five proteins which are HCV entry factors or facilitators including epidermal growth factor receptor (EGFR). Notably, we discovered calpain-5 (CAPN5) and the ubiquitin ligase Casitas B-lineage lymphoma proto-oncogene B (CBLB) to form a complex with CD81 and support HCV entry. CAPN5 and CBLB were required for a post-binding and pre-replication step in the HCV life cycle. Knockout of CAPN5 and CBLB reduced susceptibility to all tested HCV genotypes, but not to other enveloped viruses such as vesicular stomatitis virus and human coronavirus. Furthermore, Plasmodium sporozoites relied on a distinct set of CD81 interaction partners for liver cell entry. Our findings reveal a comprehensive CD81 network in human liver cells and show that HCV and Plasmodium highjack selective CD81 interactions, including CAPN5 and CBLB for HCV, to invade cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Calpaína/metabolismo , Hepacivirus/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Tetraspanina 28/metabolismo , Internalização do Vírus , Linhagem Celular , Hepatite C/metabolismo , Humanos , Proto-Oncogene Mas
10.
PLoS One ; 13(7): e0200032, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29975762

RESUMO

Sporozoite forms of the malaria parasite Plasmodium are transmitted by mosquitoes and first infect the liver for an initial round of replication before parasite proliferation in the blood. The molecular mechanisms involved during sporozoite invasion of hepatocytes remain poorly understood. In previous studies, two receptors of the Hepatitis C virus (HCV), the tetraspanin CD81 and the Scavenger Receptor BI (SR-BI), were shown to play an important role during entry of Plasmodium sporozoites into hepatocytic cells. In contrast to HCV entry, which requires both CD81 and SR-BI together with additional host factors, CD81 and SR-BI operate independently during malaria liver infection, as sporozoites can use CD81 and/or SR-BI, depending on the Plasmodium species, to invade hepatocytes. However, the molecular function of CD81 and SR-BI during parasite entry remains unknown. Another HCV entry factor, the Ephrin receptor A2 (EphA2), was recently reported to play a key role as a host cell entry factor during malaria liver infection. Here, we investigated the contribution of EphA2 during CD81-dependent and SR-BI-dependent sporozoite infection. Using small interfering RNA (siRNA) and antibodies against EphA2, combined with direct detection of parasites by flow cytometry or microscopy, we show that blocking EphA2 has no significant impact on P. yoelii or P. berghei host cell infection, irrespective of the entry route. Thus, our findings argue against an important role of EphA2 during malaria liver infection.


Assuntos
Hepatócitos/parasitologia , Plasmodium/fisiologia , Receptor EphA2/metabolismo , Esporozoítos/fisiologia , Regulação da Expressão Gênica , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Especificidade da Espécie
11.
Elife ; 62017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28506360

RESUMO

Plasmodium sporozoites, the mosquito-transmitted forms of the malaria parasite, first infect the liver for an initial round of replication before the emergence of pathogenic blood stages. Sporozoites represent attractive targets for antimalarial preventive strategies, yet the mechanisms of parasite entry into hepatocytes remain poorly understood. Here we show that the two main species causing malaria in humans, Plasmodium falciparum and Plasmodium vivax, rely on two distinct host cell surface proteins, CD81 and the Scavenger Receptor BI (SR-BI), respectively, to infect hepatocytes. By contrast, CD81 and SR-BI fulfil redundant functions during infection by the rodent parasite P. berghei. Genetic analysis of sporozoite factors reveals the 6-cysteine domain protein P36 as a major parasite determinant of host cell receptor usage. Our data provide molecular insights into the invasion pathways used by different malaria parasites to infect hepatocytes, and establish a functional link between a sporozoite putative ligand and host cell receptors.


Assuntos
Proteínas de Membrana/metabolismo , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium vivax/crescimento & desenvolvimento , Proteínas de Protozoários/metabolismo , Esporozoítos/crescimento & desenvolvimento , Animais , Linhagem Celular , Endocitose , Hepatócitos/parasitologia , Interações Hospedeiro-Patógeno , Humanos , Roedores , Receptores Depuradores Classe B/metabolismo , Tetraspanina 28/metabolismo
12.
Cell Host Microbe ; 18(5): 593-603, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26607162

RESUMO

Plasmodium sporozoites are deposited in the host skin by Anopheles mosquitoes. The parasites migrate from the dermis to the liver, where they invade hepatocytes through a moving junction (MJ) to form a replicative parasitophorous vacuole (PV). Malaria sporozoites need to traverse cells during progression through host tissues, a process requiring parasite perforin-like protein 1 (PLP1). We find that sporozoites traverse cells inside transient vacuoles that precede PV formation. Sporozoites initially invade cells inside transient vacuoles by an active MJ-independent process that does not require vacuole membrane remodeling or release of parasite secretory organelles typically involved in invasion. Sporozoites use pH sensing and PLP1 to exit these vacuoles and avoid degradation by host lysosomes. Next, parasites enter the MJ-dependent PV, which has a different membrane composition, precluding lysosome fusion. The malaria parasite has thus evolved different strategies to evade host cell defense and establish an intracellular niche for replication.


Assuntos
Malária/patologia , Malária/parasitologia , Plasmodium berghei/metabolismo , Plasmodium yoelii/metabolismo , Esporozoítos/patologia , Esporozoítos/parasitologia , Vacúolos/parasitologia , Animais , Anopheles/parasitologia , Células Hep G2 , Hepatócitos/patologia , Hepatócitos/ultraestrutura , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/ultraestrutura , Plasmodium yoelii/crescimento & desenvolvimento , Plasmodium yoelii/ultraestrutura , Proteínas de Protozoários/metabolismo , Esporozoítos/metabolismo , Vacúolos/metabolismo , Vacúolos/ultraestrutura
13.
J Infect ; 70(5): 499-503, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25597824

RESUMO

OBJECTIVES: Current methods for cryptococcal antigen detection have some limitations. This study aimed at evaluating a lateral flow assay (LFA) for the diagnosis of cryptococcosis in a French University medical center. METHODS: A retrospective study was performed on samples collected from patients with a definitive diagnosis of cryptococcosis (group I 66 samples; 28 patients) or with non-Cryptococcus invasive fungal infection (group II 18 samples; 17 patients). In addition, 274 samples from 205 consecutive patients, either suspected of cryptococcal infection or routinely screened during their follow-up, were prospectively tested (group III). Cryptococcal antigen was assayed using LFA and an EIA. A latex-based test was used for confirmation. RESULTS: Sensitivity calculated on group I and specificity on group II, were respectively at 100% and 90.0%. Two false positives were related to Trichosporon fungemia. Per-sample analysis on group III revealed sensitivity, specificity, positive and negative predictive values all at 100% for CSF, and at 100%, 98.9%, 75% and 100%, respectively for serum samples. LFA enabled the diagnosis of two cases of asymptomatic cryptococcosis. CONCLUSION: The excellent diagnostic value and practicality (visual reading results in 15 min) of LFA make it fully appropriate for the diagnosis of cryptococcosis in this particular setting.


Assuntos
Antígenos de Fungos/análise , Cromatografia de Afinidade , Criptococose/diagnóstico , Cryptococcus gattii/isolamento & purificação , Cryptococcus neoformans/isolamento & purificação , Centros Médicos Acadêmicos , Idoso , Antígenos de Fungos/sangue , Antígenos de Fungos/líquido cefalorraquidiano , Doenças Assintomáticas , Líquido da Lavagem Broncoalveolar/microbiologia , Criptococose/microbiologia , Cryptococcus neoformans/imunologia , Feminino , França , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Sensibilidade e Especificidade
14.
Proteomics ; 9(20): 4627-31, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19750514

RESUMO

MALDI-TOF MS can be used for the identification of microorganism species. We have extended its application to a novel assay of Candida albicans susceptibility to fluconazole, based on monitoring modifications of the proteome of yeast cells grown in the presence of varying drug concentrations. The method was accurate, and reliable, and showed full agreement with the Clinical Laboratory Standards Institute's reference method. This proof-of-concept demonstration highlights the potential for this approach to test other pathogens.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Fluconazol/farmacologia , Testes de Sensibilidade Microbiana/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Candida albicans/crescimento & desenvolvimento
15.
PLoS Pathog ; 4(8): e1000121, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18688281

RESUMO

Plasmodium sporozoites are deposited in the skin by Anopheles mosquitoes. They then find their way to the liver, where they specifically invade hepatocytes in which they develop to yield merozoites infective to red blood cells. Relatively little is known of the molecular interactions during these initial obligatory phases of the infection. Recent data suggested that many of the inoculated sporozoites invade hepatocytes an hour or more after the infective bite. We hypothesised that this pre-invasive period in the mammalian host prepares sporozoites for successful hepatocyte infection. Therefore, the genes whose expression becomes modified prior to hepatocyte invasion would be those likely to code for proteins implicated in the subsequent events of invasion and development. We have used P. falciparum sporozoites and their natural host cells, primary human hepatocytes, in in vitro co-culture system as a model for the pre-invasive period. We first established that under co-culture conditions, sporozoites maintain infectivity for an hour or more, in contrast to a drastic loss in infectivity when hepatocytes were not included. Thus, a differential transcriptome of salivary gland sporozoites versus sporozoites co-cultured with hepatocytes was established using a pan-genomic P. falciparum microarray. The expression of 532 genes was found to have been up-regulated following co-culture. A fifth of these genes had no orthologues in the genomes of Plasmodium species used in rodent models of malaria. Quantitative RT-PCR analysis of a selection of 21 genes confirmed the reliability of the microarray data. Time-course analysis further indicated two patterns of up-regulation following sporozoite co-culture, one transient and the other sustained, suggesting roles in hepatocyte invasion and liver stage development, respectively. This was supported by functional studies of four hitherto uncharacterized proteins of which two were shown to be sporozoite surface proteins involved in hepatocyte invasion, while the other two were predominantly expressed during hepatic parasite development. The genome-wide up-regulation of expression observed supports the hypothesis that the shift from the mosquito to the mammalian host contributes to activate quiescent salivary gland sporozoites into a state of readiness for the hepatic stages. Functional studies on four of the up-regulated genes validated our approach as one means to determine the repertoire of proteins implicated during the early events of the Plasmodium infection, and in this case that of P. falciparum, the species responsible for the severest forms of malaria.


Assuntos
Hepatócitos/metabolismo , Malária Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/biossíntese , Regulação para Cima , Animais , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Hepatócitos/parasitologia , Temperatura Alta , Humanos , Malária Falciparum/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA