Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Foods ; 13(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39335892

RESUMO

This article explores the advancements in biodegradable food packaging materials derived from wheat. Wheat, a predominant global cereal crop, offers a sustainable alternative to conventional single-use plastics through its starch, gluten, and fiber components. This study highlights the fabrication processes of wheat-based materials, including solvent casting and extrusion, and their applications in enhancing the shelf life and quality of packaged foods. Recent innovations demonstrate effectiveness in maintaining food quality, controlling moisture content, and providing microbiological protection. Despite the promising potential, challenges such as moisture content and interfacial adhesion in composites remain. This review concludes with an emphasis on the environmental benefits and future trends in wheat-based packaging materials.

2.
Nanomaterials (Basel) ; 13(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37049336

RESUMO

The use of natural reducing and capping agents has gained importance as a way to synthesize nanoparticles (NPs) in an environmentally sustainable manner. Increasing numbers of studies have been published on the green synthesis of NPs using natural sources such as bacteria, fungi, and plants. In recent years, the use of honey in the synthesis of metal and metal oxide NPs has become a new and promising area of research. Honey acts as both a stabilizing and reducing agent in the NP synthesis process and serves as a precursor. This review focuses on the use of honey in the synthesis of silver NPs (Ag-NPs) and zinc oxide NPs (ZnO-NPs), emphasizing its role as a reducing and capping agent. Additionally, a comprehensive examination of the bio-based reducing and capping/stabilizing agents used in the honey-mediated biosynthesis mechanism is provided. Finally, the review looks forward to environmentally friendly methods for NP synthesis.

3.
Plants (Basel) ; 11(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36235511

RESUMO

Dabai (Canarium odontophyllum) is a fruit-bearing plant native to Borneo. Its fruit is an indigenous seasonal fruit that is considered to be underutilized due to its short shelf life. However, new products have been developed to ensure a continuous supply of dabai fruit throughout the year. Hence, the exploration of dabai fruits in characterizations and utilization for food products and essential oil has expanded exponentially. This review addresses the nutritional values, health benefits, potential food products, and essential oil processing of dabai fruit. All parts of dabai fruit, such as the pulp, skin, and kernel, contain a considerable amount of bioactive compounds, dietary fiber, and nutrients. Moreover, dabai fruit has also been proven to have health benefits such as an antioxidant capacity, cholesterol reduction, diabetes type 2 prevention, and reduction in the risk of heart disease. Some potential dabai-based food products and oil processing of dabai are also highlighted. The future perspectives and challenges concerning the potential uses of dabai are critically addressed at the end of this review. Based on this review, it is proven that dabai has various health benefits and represents a potential breakthrough in the agricultural and food industries.

4.
Nanomaterials (Basel) ; 12(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893528

RESUMO

Wounds with impaired healing, including delayed acute injuries and chronic injuries, generally fail to progress through normal healing stages. A deeper understanding of the biochemical processes involved in chronic wound cures is necessary to correct the microenvironmental imbalances in the wound treatment designs of products. The therapeutic benefits of honey, particularly its antimicrobial activity, make it a viable option for wound treatment in a variety of situations. Integration with nanotechnology has opened up new possibilities not only for wound healing but also for other medicinal applications. In this review, recent advances in honey-based nanoparticles for wound healing are discussed. This also covers the mechanism of the action of nanoparticles in the wound healing process and perspectives on the challenges and future trends of using honey-based nanoparticles. The underlying mechanisms of wound healing using honey are believed to be attributed to hydrogen peroxide, high osmolality, acidity, non-peroxide components, and phenols. Therefore, incorporating honey into various wound dressings has become a major trend due to the increasing demand for combination dressings in the global wound dressing market because these dressings contain two or more types of chemical and physical properties to ensure optimal functionality. At the same time, their multiple features (low cost, biocompatibility, and swelling index) and diverse fabrication methods (electrospun fibres, hydrogels, etc.) make them a popular choice among researchers.

5.
Foods ; 10(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34574242

RESUMO

Nanoemulsions (NEs) have been used in a wide range of products, such as those produced by the food, cosmetics, and pharmaceutical industries, due to their stability and long shelf life. In the present study, stingless bee honey (SBH) NEs were formulated using SBH, oleic acid, tween 80, glycerol, and double-distilled water. SBH NEs were prepared using a high-pressure homogeniser and were characterised by observing their stability and droplet size. Fourier Transform-Infrared (FTIR) analysis was used to observe the functional groups of the SBH NEs after being subjected to high-pressure homogenisation. Transmission Electron Microscopy (TEM) images were then used to confirm the particle size of the SBH NEs and to investigate their morphology. The effects of the independent variables (percentage of oleic acid, storage time, and storage temperature) on the response variables (particle size and polydispersity index) were investigated using the response surface methodology, along with a three-level factorial design. The results showed that the models developed via the response surface methodology were reliable, with a coefficient of determination (R2) of more than 0.90. The experimental validation indicated an error of less than 10% in the actual results compared to the predicted results. The FTIR analysis showed that SBH NEs have the same functional group as SBH. Observation through TEM indicated that the SBH NEs had a similar particle size, which was between 10 and 100 nm. Thus, this study shows that SBH NEs can be developed using a high-pressure homogeniser, which indicates a new direction for SBH by-products.

6.
Foods ; 10(2)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669392

RESUMO

This study evaluated the respiration rate of coated and uncoated (control) papayas (Carica papaya L.) with 15% of Kelulut honey (KH) nanoparticles (Nps) coating solution during cold storage at 12 ± 1 °C for 21 days. The respiration rate of the papayas significantly changed during storage, with an increase in CO2 and a decrease in O2 and C2H4, while the ascorbic acid and total phenolic content was maintained. The changes in respiration rate were rather slower for coated papayas when compared to control ones. A kinetic model was established from the experimental data to describe the changes of O2, CO2, and C2H4 production in papayas throughout the storage period. All O2, CO2, and C2H4 were experimentally retrieved from a closed system method and then represented by the Peleg model. The outcomes indicated the Peleg constant K1 and K2, which were gained from linear regression analysis and coefficients of determination (R2), seemed to fit well with the experimental data, whereby the R2 values exceeded 0.85 for both coated and control papayas. The model confirmed both the capability and predictability aspects of the respiration rate displayed by papayas coated with KH Nps throughout the cold storage period. This is supported by the differences in the stomatal aperture of coated and control papaya shown by microstructural images.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA