Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Med Chem ; 64(3): 1454-1480, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33492963

RESUMO

Sphingosine-1-phosphate (S1P) binds to a family of sphingosine-1-phosphate G-protein-coupled receptors (S1P1-5). The interaction of S1P with these S1P receptors has a fundamental role in many physiological processes in the vascular and immune systems. Agonist-induced functional antagonism of S1P1 has been shown to result in lymphopenia. As a result, agonists of this type hold promise as therapeutics for autoimmune disorders. The previously disclosed differentiated S1P1 modulator BMS-986104 (1) exhibited improved preclinical cardiovascular and pulmonary safety profiles as compared to earlier full agonists of S1P1; however, it demonstrated a long pharmacokinetic half-life (T1/2 18 days) in the clinic and limited formation of the desired active phosphate metabolite. Optimization of this series through incorporation of olefins, ethers, thioethers, and glycols into the alkyl side chain afforded an opportunity to reduce the projected human T1/2 and improve the formation of the active phosphate metabolite while maintaining efficacy as well as the improved safety profile. These efforts led to the discovery of 12 and 24, each of which are highly potent, biased agonists of S1P1. These compounds not only exhibited shorter in vivo T1/2 in multiple species but are also projected to have significantly shorter T1/2 values in humans when compared to our first clinical candidate. In models of arthritis, treatment with 12 and 24 demonstrated robust efficacy.


Assuntos
Compostos Bicíclicos com Pontes/síntese química , Compostos Bicíclicos com Pontes/farmacologia , Pró-Proteína Convertases/efeitos dos fármacos , Serina Endopeptidases/efeitos dos fármacos , Animais , Artrite Experimental/tratamento farmacológico , Doenças Autoimunes/tratamento farmacológico , Biotransformação , Compostos Bicíclicos com Pontes/efeitos adversos , Líquido da Lavagem Broncoalveolar , Quimiotaxia de Leucócito/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Humanos , Pneumopatias/induzido quimicamente , Pneumopatias/patologia , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Fosforilação , Ratos , Ratos Endogâmicos Lew , Relação Estrutura-Atividade
2.
ACS Med Chem Lett ; 11(9): 1766-1772, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32944145

RESUMO

Efforts aimed at increasing the in vivo potency and reducing the elimination half-life of 1 and 2 led to the identification of aryl ether and thioether-derived bicyclic S1P1 differentiated modulators 3-6. The effects of analogs 3-6 on lymphocyte reduction in the rat (desired pharmacology) along with pulmonary- and cardiovascular-related effects (undesired pharmacology) are described. Optimization of the overall properties in the aryl ether series yielded 3d, and the predicted margin of safety against the cardiovascular effects of 3d would be large enough for human studies. Importantly, compared to 1 and 2, compound 3d had a better profile in both potency (ED50 < 0.05 mg/kg) and predicted human half-life (t 1/2 ∼ 5 days).

3.
Front Pharmacol ; 10: 749, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379564

RESUMO

Antibody-drug conjugates (ADCs) are composed of an antibody linked to cytotoxic anticancer payloads. ADCs recognize tumor-specific cell surface antigens and are internalized into lysosomes where proteolytic enzymes release the cytotoxic payloads. Efflux transporters on plasma membrane that play a significant role on multi-drug resistance in chemotherapy can be internalized on lysosomal membrane and sequester the cytotoxic payloads. In the present study, ATP binding cassette (ABC) efflux transporters including breast cancer resistance protein (BCRP), P-glycoprotein (P-gp-MDR1), multidrug resistance protein (MRP) 2, MRP3 and MRP4 in lysosomal, and plasma membrane of tumor cells were quantified by targeted quantitative proteomics. The cytotoxicity of brentuximab vedotin and its cytotoxic payload monomethyl auristatin E (MMAE) to the tumor cell lines in the presence and absence of elacridar (P-gp-MDR1 inhibitor) or chloroquine (lysosomotropic agent) were evaluated. MMAE is a substrate for P-gp-MDR1, as the apparent efflux ratio in MDR1 transfected MDCK cell monolayers was 44.5, and elacridar abolished the MMAE efflux. Cell lines that highly express P-gp-MDR1 show higher EC50s toward the cell killing effects of MMAE. Co-incubation with chloroquine or elacridar resulted in left shift of MMAE EC50 by 2.9-16-fold and 4.2-22-fold, respectively. Similarly co-incubation with chloroquine or elacridar or in combination of chloroquine and elacridar increased cytotoxic effects of brentuximab vedotin by 2.8- to 21.4-fold on KM-H2 cells that express a specific tumor antigen CD30 and P-gp-MDR1. These findings demonstrate important roles of P-gp-MDR1 on cytotoxic effects of brentuximab vedotin and its payload MMAE. Collectively, ABC transporter-mediated drug extrusion and/or sequestration needs to be early assessed for selection of optimal payloads and linkers when developing ADCs.

4.
J Med Chem ; 62(5): 2265-2285, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30785748

RESUMO

Recently, our research group reported the identification of BMS-986104 (2) as a differentiated S1P1 receptor modulator. In comparison to fingolimod (1), a full agonist of S1P1 currently marketed for the treatment of relapse remitting multiple sclerosis (RRMS), 2 offers several potential advantages having demonstrated improved safety multiples in preclinical evaluations against undesired pulmonary and cardiovascular effects. In clinical trials, 2 was found to exhibit a pharmacokinetic half-life ( T1/2) longer than that of 1, as well as a reduced formation of the phosphate metabolite that is required for activity against S1P1. Herein, we describe our efforts to discover highly potent, partial agonists of S1P1 with a shorter T1/2 and increased in vivo phosphate metabolite formation. These efforts culminated in the discovery of BMS-986166 (14a), which was advanced to human clinical evaluation. The pharmacokinetic/pharmacodynamic (PK/PD) relationship as well as pulmonary and cardiovascular safety assessments are discussed. Furthermore, efficacy of 14a in multiple preclinical models of autoimmune diseases are presented.


Assuntos
Ensaios Clínicos como Assunto , Naftalenos/farmacologia , Receptores de Esfingosina-1-Fosfato/agonistas , Tetra-Hidronaftalenos/farmacologia , Animais , Líquido da Lavagem Broncoalveolar , Relação Dose-Resposta a Droga , Meia-Vida , Humanos , Naftalenos/química , Naftalenos/farmacocinética , Ratos , Ratos Endogâmicos Lew , Tetra-Hidronaftalenos/química , Tetra-Hidronaftalenos/farmacocinética
6.
AAPS J ; 19(6): 1878-1889, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29019117

RESUMO

In the present investigations, we evaluate in vitro hepatocyte uptake and partitioning for the prediction of in vivo clearance and liver partitioning. Monkeys were intravenously co-dosed with rosuvastatin and bosentan, substrates of the organic anion transporting polypeptides (OATPs), and metformin, a substrate of organic cation transporter 1 (OCT1). Serial plasma and liver samples were collected over time. Liver and plasma unbound fraction was determined using equilibrium dialysis. In vivo unbound partitioning (Kpu,u) for rosuvastatin, bosentan, and metformin, calculated from total concentrations in the liver and plasma, were 243, 553, and 15, respectively. A physiologically based pharmacokinetic monkey model that incorporates active and passive hepatic uptake was developed to fit plasma and liver concentrations. In addition, a two-compartment model was used to fit in vitro hepatic uptake curves in suspended monkey hepatocyte to determine active uptake, passive diffusion, and intracellular unbound fraction parameters. At steady-state in the model, in vitro Kpu,u was determined. The results demonstrated that in vitro values under-predicted in vivo active uptake for rosuvastatin, bosentan, and metformin by 6.7-, 28-, and 1.5-fold, respectively, while passive diffusion was over-predicted. In vivo Kpu,u values were under-predicted from in vitro data by 30-, 79-, and 3-fold. In conclusion, active uptake and liver partitioning in monkeys for OATP substrates were greatly under-predicted from in vitro hepatocyte uptake, while OCT-mediated uptake and partitioning scaled reasonably well from in vitro, demonstrating substrate- and transporter-dependent scaling factors. The combination of in vitro experimental and modeling approaches proved useful for assessing prediction of in vivo intracellular partitioning.


Assuntos
Fígado/metabolismo , Transportadores de Ânions Orgânicos/fisiologia , Transportador 1 de Cátions Orgânicos/fisiologia , Animais , Bosentana , Macaca fascicularis , Metformina/farmacocinética , Modelos Biológicos , Rosuvastatina Cálcica/farmacocinética , Sulfonamidas/farmacocinética
7.
Medchemcomm ; 8(4): 725-729, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108791

RESUMO

Recently, our research group reported the identification of prodrug amino-alcohol 2 as a potent and efficacious S1P1 receptor modulator. This molecule is differentiated preclinically over the marketed drug fingolimod (Gilenya 1), whose active phosphate metabolite is an S1P1 full agonist, in terms of pulmonary and cardiovascular safety. S1P1 partial agonist 2, however, has a long half-life in rodents and was projected to have a long half-life in humans. The purpose of this communication is to disclose highly potent partial agonists of S1P1 with shorter half-lives relative to the clinical compound 2. PK/PD relationships as well as their preclinical pulmonary and cardiovascular safety assessment are discussed.

8.
J Med Chem ; 59(24): 11138-11147, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28002964

RESUMO

We describe a highly efficient route for the synthesis of 4a (BMS-986104). A key step in the synthesis is the asymmetric hydroboration of trisubstituted alkene 6. Particularly given the known difficulties involved in this type of transformation (6 → 7), the current methodology provides an efficient approach to prepare this class of compounds. In addition, we disclose the efficacy of 4a in a mouse EAE model, which is comparable to 4c (FTY720). Mechanistically, 4a exhibited excellent remyelinating effects on lysophosphatidylcholine (LPC) induced demyelination in a three-dimensional brain cell culture assay.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Naftalenos/farmacologia , Receptores de Lisoesfingolipídeo/agonistas , Animais , Células Cultivadas , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Células HEK293 , Humanos , Linfócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Estrutura Molecular , Naftalenos/síntese química , Naftalenos/química , Relação Estrutura-Atividade
9.
J Med Chem ; 59(21): 9837-9854, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27726358

RESUMO

Fingolimod (1) is the first approved oral therapy for the treatment of relapsing remitting multiple sclerosis. While the phosphorylated metabolite of fingolimod was found to be a nonselective S1P receptor agonist, agonism specifically of S1P1 is responsible for the peripheral blood lymphopenia believed to be key to its efficacy. Identification of modulators that maintain activity on S1P1 while sparing activity on other S1P receptors could offer equivalent efficacy with reduced liabilities. We disclose in this paper a ligand-based drug design approach that led to the discovery of a series of potent tricyclic agonists of S1P1 with selectivity over S1P3 and were efficacious in a pharmacodynamic model of suppression of circulating lymphocytes. Compound 10 had the desired pharmacokinetic (PK) and pharmacodynamic (PD) profile and demonstrated maximal efficacy when administered orally in a rat adjuvant arthritis model.


Assuntos
Desenho de Fármacos , Cloridrato de Fingolimode/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Receptores de Lisoesfingolipídeo/agonistas , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/imunologia , Cães , Relação Dose-Resposta a Droga , Cloridrato de Fingolimode/administração & dosagem , Cloridrato de Fingolimode/química , Adjuvante de Freund/administração & dosagem , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Compostos Heterocíclicos com 3 Anéis/química , Ligantes , Linfócitos/efeitos dos fármacos , Macaca fascicularis , Masculino , Camundongos , Estrutura Molecular , Mycobacterium/efeitos dos fármacos , Ratos , Ratos Endogâmicos Lew , Relação Estrutura-Atividade , Distribuição Tecidual
10.
ACS Med Chem Lett ; 7(3): 283-8, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26985316

RESUMO

Clinical validation of S1P receptor modulation therapy was achieved with the approval of fingolimod (Gilenya, 1) as the first oral therapy for relapsing remitting multiple sclerosis. However, 1 causes a dose-dependent reduction in the heart rate (bradycardia), which occurs within hours after first dose. We disclose the identification of clinical compound BMS-986104 (3d), a novel S1P1 receptor modulator, which demonstrates ligand-biased signaling and differentiates from 1 in terms of cardiovascular and pulmonary safety based on preclinical pharmacology while showing equivalent efficacy in a T-cell transfer colitis model.

11.
J Pharm Sci ; 99(4): 2135-52, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19780144

RESUMO

Optimizing pharmacokinetic properties to improve oral exposure is a common theme in modern drug discovery. In the present work, in vitro Caco-2 permeability and microsomal half-life screens were utilized in an effort to guide the structure-activity relationship in order to improve the pharmacokinetic properties of novel HIV-1 attachment inhibitors. The relevance of the in vitro screens to in vivo pharmacokinetic properties was first demonstrated with a number of program compounds at the early stage of lead optimization. The Caco-2 permeability, tested at 200 microM, was quantitatively predictive of in vivo oral absorption, with complete absorption occurring at a Caco-2 permeability of 100 nm/s or higher. The liver microsomal half-life screen, conducted at 1 microM substrate concentration, can readily differentiate low-, intermediate-, and high-clearance compounds in rats, with a nearly 1:1 correlation in 12 out of 13 program compounds tested. Among the >100 compounds evaluated, BMS-488043 emerged as a lead, exhibiting a Caco-2 permeability of 178 nm/s and a microsomal half-life predictive of a low clearance (4 mL/min/kg) in humans. These in vitro characteristics translated well to the in vivo setting. The oral bioavailability of BMS-488043 in rats, dogs, and monkeys was 90%, 57%, and 60%, respectively. The clearance was low in all three species tested, with a terminal half-life ranging from 2.4 to 4.7 h. Furthermore, the oral exposure of BMS-488043 was significantly improved (6- to 12-fold in rats and monkeys) compared to the prototype compound BMS-378806 that had a suboptimal Caco-2 permeability (51 nm/s) and microsomal half-life. More importantly, the improvements in preclinical pharmacokinetics translated well to humans, leading to a >15-fold increase in the human oral exposure of BMS-488043 than BMS-378806 and enabling a clinical proof-of-concept for this novel class of anti-HIV agents. The current studies demonstrated the valuable role of in vitro ADME screens in improving oral pharmacokinetics at the lead optimization stage.


Assuntos
Fármacos Anti-HIV/metabolismo , Fármacos Anti-HIV/farmacocinética , Permeabilidade da Membrana Celular , Inibidores da Fusão de HIV/metabolismo , Inibidores da Fusão de HIV/farmacocinética , Microssomos Hepáticos/metabolismo , Piperazinas/metabolismo , Piperazinas/farmacocinética , Administração Oral , Animais , Fármacos Anti-HIV/química , Células CACO-2 , Cães , Inibidores da Fusão de HIV/química , Meia-Vida , Haplorrinos , Humanos , Indóis , Masculino , Piperazinas/química , Ácido Pirúvico , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
12.
Arch Pharm Res ; 30(8): 1002-7, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17879754

RESUMO

Permeability estimates using Caco-2 cells do not accurately predict the absorption of hydrophilic drugs that are primarily absorbed via the paracellular pathway. The objective of this study was to investigate whether modulation of tight junctions would help differentiation of paracellularly absorbed compounds. Tight junctions in Caco-2 cell monolayers were manipulated using calcium depletion approaches to decrease the transepithelial electrical resistance (TEER) of the monolayers, and permeability of hydrophilic compounds were measured under these conditions. Permeability of these compounds were also measured in Calu-3 cells, which have tighter junctions than Caco-2 cells. Calcium depletion loosened the tight junctions of Caco-2 cells to varying levels as measured by the decrease in TEER values of the monolayers. While the absolute permeability of all the model compounds increased as the tight junctions were loosened, the ratios of their permeability relative to mannitol permeability were similar. The permeability of these compounds in the tighter Calu-3 cells were also found to be similar to each other. Altering the tight junctions of Caco-2 cells to obtain leakier cell monolayers, or using a cell line with tighter junctions like Calu-3 cells, did not improve differentiation between well absorbed and poorly absorbed hydrophilic drugs. Mere manipulation of the tight junctions to increase or decrease transepithelial electrical resistance does not appear to be a viable approach to predict human absorption for hydrophilic compounds that are primarily absorbed via the paracellular pathway.


Assuntos
Permeabilidade da Membrana Celular , Células Epiteliais/metabolismo , Mucosa Bucal/metabolismo , Preparações Farmacêuticas/metabolismo , Junções Íntimas/metabolismo , Absorção , Células CACO-2 , Cálcio/metabolismo , Células Epiteliais/fisiologia , Humanos , Preparações Farmacêuticas/química , Junções Íntimas/fisiologia
13.
J Chromatogr B Analyt Technol Biomed Life Sci ; 854(1-2): 260-7, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17524973

RESUMO

Caco-2 cells, the human colon carcinoma cells, are typically used for screening compounds for their permeability characteristics and P-glycoprotein (P-gp) interaction potential during discovery and development. The P-gp inhibition of test compounds is assessed by performing bi-directional permeability studies with digoxin, a well established P-gp substrate probe. Studies performed with digoxin alone as well as digoxin in presence of test compounds as putative inhibitors constitute the P-gp inhibition assay used to assess the potential liability of discovery compounds. Radiolabeled (3)H-digoxin is commonly used in such studies followed by liquid scintillation counting. This manuscript describes the development of a sensitive, accurate, and reproducible LC-MS/MS method for analysis of digoxin and its internal standard digitoxin using an on-line extraction turbulent flow chromatography coupled to tandem mass spectrometric detection that is amendable to high throughput with use of 96-well plates. The standard curve for digoxin was linear between 10 nM and 5000 nM with regression coefficient (R(2)) of 0.99. The applicability and reliability of the analysis method was evaluated by successful demonstration of efflux ratio (permeability B to A over permeability A to B) greater than 10 for digoxin in Caco-2 cells. Additional evaluations were performed on 13 marketed compounds by conducting inhibition studies in Caco-2 cells using classical P-gp inhibitors (ketoconazole, cyclosporin, verapamil, quinidine, saquinavir etc.) and comparing the results to historical data with (3)H-digoxin studies. Similarly, P-gp inhibition studies with LC-MS/MS analytical method for digoxin were also performed for 21 additional test compounds classified as negative, moderate, and potent P-gp inhibitors spanning multiple chemo types and results compared with the historical P-gp inhibition data from the (3)H-digoxin studies. A very good correlation coefficient (R(2)) of 0.89 between the results from the two analytical methods affords an attractive LC-MS/MS analytical option for labs that need to conduct the P-gp inhibition assay without using radiolabeled compounds.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Cromatografia Líquida/métodos , Digoxina/análise , Espectrometria de Massas em Tandem/métodos , Células CACO-2 , Humanos , Projetos Piloto
14.
Int J Pharm ; 297(1-2): 235-41, 2005 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-15907606

RESUMO

The use of Caco-2 cells for permeability screening of discovery compounds is quite well established and serves as the "method-of-choice" across the pharmaceutical industries worldwide. The typical permeability-screening model involves growing cells on a 12 well or 24 well transwell format. In this manuscript, we report the use of Caco-2 cells grown on 96 well transwell plates for screening of discovery compounds to assess their permeability characteristics. A set of standard compounds (marketed compounds) belonging to the various class of Biopharmaceutics Classification System (BCS) were used to assess the utility of the 96 well Caco-2 cells. Extensive validations were also performed with approximately 160 Bristol-Myers Squibb (BMS) discovery compounds by comparing the permeability values in the 96 well Caco-2 cells with the in-house 24 well Caco-2 cells. Functional Caco-2 cells with intact monolayers could be established in the 96 well format using optimized seeding and culturing conditions. The permeability of BCS compounds in the 96 well format was found to be comparable to the permeability in 24 well format. Similarly, there was very good correlation (R2=0.93) between the two formats for the extensive validation performed with in-house discovery compounds. The validated 96 well Caco-2 cell system presents a very attractive permeability screening tool that can perform much more efficiently than the conventional 12 well or 24 well systems while providing the same high quality permeability screening data.


Assuntos
Células CACO-2/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Automação , Biofarmácia , Humanos , Controle de Qualidade , Reprodutibilidade dos Testes
15.
J Pharm Sci ; 94(5): 1115-23, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15793809

RESUMO

BMS-262084 is a potent and selective beta-lactam tryptase inhibitor with therapeutic potential for treating asthma. The oral bioavailability of BMS-262084 was low in rats (4% at a dose of 0.5 mg/kg) due to poor absorption. BMS-262084 was excreted mainly unchanged in the urine, suggesting minimal metabolism in rats. The objective of this study was to investigate the mechanisms of oral absorption of BMS-262084 in rats. Modulation of intestinal tight junctions, binding to trypsin, and involvement of the intestinal dipeptide transport system and P-glycoprotein (P-gp) in the absorption of BMS-262084 were examined. Coadministration of BMS-262084 with SQ-29852, a substrate of the intestinal dipeptide transport system, did not change the oral absorption of BMS-262084. An increase in the dose of BMS-262084 from 0.5 to 50 mg/kg resulted in a 3.7-fold increase in its oral absorption. Inulin absorption was enhanced upon coadministration with BMS-262084, suggesting the opening of tight junctions in the intestinal epithelium. Coadministration of aprotinin, a trypsin inhibitor, increased the oral absorption of BMS-262084 several fold. In vitro, using Caco-2 cells, BMS-262084 appeared to be a P-gp substrate, with an efflux ratio of 14. These results suggest that absorption of BMS-262084 is mediated by several concurrent mechanisms. At higher doses of BMS-262084, increased absorption may be primarily due to opening of tight junctions in the intestinal epithelium and consequent absorption via the paracellular pathway, while at lower doses, binding to trypsin may contribute to limiting its absorption. P-gp efflux may also play a role in influencing the absorption of BMS-262084. The intestinal dipeptide transporter system does not appear to be involved in the absorption of BMS-262084.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Azetidinas/farmacocinética , Piperazinas/farmacocinética , Inibidores de Serina Proteinase/farmacocinética , Tripsina/metabolismo , Administração Oral , Animais , Azetidinas/administração & dosagem , Azetidinas/farmacologia , Disponibilidade Biológica , Células CACO-2 , Dipeptídeos/metabolismo , Relação Dose-Resposta a Droga , Humanos , Hipoglicemiantes , Injeções Intra-Arteriais , Insulina , Absorção Intestinal , Piperazinas/administração & dosagem , Piperazinas/farmacologia , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/administração & dosagem , Inibidores de Serina Proteinase/farmacologia , Junções Íntimas/efeitos dos fármacos , Triptases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA