Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Orthop Res ; 35(11): 2392-2396, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28186356

RESUMO

Achondroplasia (ACH) is a heritable disorder of endochondral bone formation characterized by disproportionate short stature. Osteogenesis imperfecta (OI) is a heritable bone and connective tissue disorder characterized by bone fragility. To investigate bone morphology of these groups, we retrospectively reviewed 169 de-identified bone age films from 20 individuals with ACH, 39 individuals with OI and 37 age- and sex-matched controls (matched to historical measurements from the Bolton-Brush Collection). We calculated robustness (Tt.Ar/Le) and relative cortical area (Ct.Ar/Tt.Ar) from measurements of the second metacarpal, which reflect overall bone health. Relative cortical area (RCA) is a significant predictor of fracture risk and correlates with robustness at other sites. Individuals with OI had RCH values above and robustness values below that of the control population. Bisphosphonate treatment did not significantly impact either robustness or RCA. In contrast to that reported in the unaffected population, there was no sexual dimorphism found in OI robustness or relative cortical area. We suggest that the underlying collagen abnormalities in OI override sex-specific effects. Individuals with ACH had robustness values above and RCA values below that of the control population. Sexual dimorphism was found in ACH robustness and RCH values. CLINICAL SIGNIFICANCE: Identifies morphologic trends in two distinct skeletal dysplasia populations (OI and ACH) to better understand development of bone robusticity and slenderness in humans. Understanding these patterns of bone morphology is important to predict how individuals will respond to treatment and to increase treatment effect. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2392-2396, 2017.


Assuntos
Acondroplasia/patologia , Conservadores da Densidade Óssea/uso terapêutico , Difosfonatos/uso terapêutico , Ossos Metacarpais/patologia , Osteogênese Imperfeita/patologia , Acondroplasia/diagnóstico por imagem , Acondroplasia/tratamento farmacológico , Adolescente , Adulto , Idoso , Conservadores da Densidade Óssea/farmacologia , Criança , Pré-Escolar , Difosfonatos/farmacologia , Feminino , Humanos , Lactente , Masculino , Ossos Metacarpais/diagnóstico por imagem , Ossos Metacarpais/efeitos dos fármacos , Pessoa de Meia-Idade , Osteogênese Imperfeita/diagnóstico por imagem , Osteogênese Imperfeita/tratamento farmacológico , Radiografia , Estudos Retrospectivos , Caracteres Sexuais , Adulto Jovem
2.
Clin Orthop Relat Res ; 473(8): 2587-98, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25903941

RESUMO

BACKGROUND: Osteogenesis imperfecta (OI) is a genetic disease characterized by skeletal fragility and deformity. There is extensive debate regarding treatment options in adults with OI. Antiresorptive treatment reduces the number of fractures in growing oim/oim mice, an animal model that reproducibly mimics the moderate-to-severe form of OI in humans. Effects of long-term treatments with antiresorptive agents, considered for treatment of older patients with OI with similar presentation (moderate-to-severe OI) are, to date, unknown. QUESTIONS/PURPOSES: Fourier transform infrared (FTIR) imaging, which produces a map of the spatial variation in chemical composition in thin sections of bone, was used to address the following questions: (1) do oim/oim mice show a sex dependence in compositional properties at 6.5 months of age; (2) is there a sex-dependent response to treatment with antiresorptive agents used in the treatment of OI in humans; and (3) are any compositional parameters in oim/oim mice corrected to wild-type (WT) values after treatment? METHODS: FTIR imaging data were collected from femurs from four to five mice per sex per genotype per treatment. Treatments were 24 weeks of saline, alendronate, or RANK-Fc; and 12 weeks of saline+12 weeks RANK-Fc and 12 weeks of alendronate+RANK-Fc. FTIR imaging compositional parameters measured in cortical and cancellous bones were mineral-to-matrix ratio, carbonate-to-mineral ratio, crystal size/perfection, acid phosphate substitution, collagen maturity, and their respective distributions (heterogeneities). Because of the small sample size, nonparametric statistics (Mann-Whitney U- and Kruskal-Wallis tests with Bonferroni correction) were used to compare saline-treated male and female mice of different genotypes and treatment effects by sex and genotype, respectively. Statistical significance was defined as p<0.05. RESULTS: At 6.5 months, saline-treated male cortical oim/oim bone had increased mineral-to-matrix ratio (p=0.016), increased acid phosphate substitution (p=0.032), and decreased carbonate-to-mineral ratio (p=0.016) relative to WT. Cancellous bone in male oim/oim also had increased mineral-to-matrix ratio (p=0.016) relative to male WT. Female oim/oim mouse bone composition for all cortical and cancellous bone parameters was comparable to WT (p>0.05). Only the female WT mice showed a response of mean compositional properties to treatment, increasing mineral-to-matrix after RANK-Fc treatment in cancellous bone (p=0.036) compared with saline-treated mice. Male oim/oim increased mineral-to-matrix cortical and cancellous bone heterogeneity in response to all long-term treatments except for saline+RANK-Fc (p<0.04); female oim/oim cortical mineral-to-matrix bone heterogeneity increased with ALN+RANK-Fc and all treatments increased cancellous female oim/oim bone acid phosphate substitution heterogeneity (p<0.04). CONCLUSIONS: Both oim/oim and WT mice, which demonstrate sex-dependent differences in composition with saline treatment, showed few responses to long-term treatment with antiresorptive agents. Female WT mice appeared to be more responsive; male oim/oim mice showed more changes in compositional heterogeneity. Changes in bone composition caused by these agents may contribute to improved bone quality in oim/oim mice, because the treatments are known to reduce fracture incidence. CLINICAL RELEVANCE: The optimal drug therapy for long-term treatment of patients with moderate-to-severe OI is unknown. Based on bone compositional changes in mice, antiresorptive treatments are useful for continued treatment in OI. There is a reported sexual dimorphism in fracture incidence in adults with OI, but to date, no one has reported differences in response to pharmaceutical intervention. This study suggests that such an investigation is warranted.


Assuntos
Alendronato/farmacologia , Conservadores da Densidade Óssea/farmacologia , Reabsorção Óssea/tratamento farmacológico , Fêmur/efeitos dos fármacos , Fraturas Ósseas/prevenção & controle , Osteogênese Imperfeita/tratamento farmacológico , Proteínas Recombinantes de Fusão/farmacologia , Animais , Densidade Óssea/efeitos dos fármacos , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Feminino , Fêmur/metabolismo , Fraturas Ósseas/genética , Fraturas Ósseas/metabolismo , Masculino , Camundongos , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/metabolismo , Fatores Sexuais , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA