Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 49(4): 557-69, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18325934

RESUMO

The enormous metabolic plasticity of plants allows detoxification of many harmful compounds that are generated during biosynthetic processes or are present as biotic or abiotic toxins in their environment. Derivatives of toxic compounds such as glutathione conjugates are moved into the central vacuole via ATP-binding cassette (ABC)-type transporters of the multidrug resistance-associated protein (MRP) subfamily. The Arabidopsis genome contains 15 AtMRP isogenes, four of which (AtMRP1, 2, 11 and 12) cluster together in one of two major phylogenetic clades. We isolated T-DNA knockout alleles in all four highly homologous AtMRP genes of this clade and subjected them to physiological analysis to assess the function of each AtMRP of this group. None of the single atmrp mutants displayed visible phenotypes under control conditions. In spite of the fact that AtMRP1 and AtMRP2 had been described as efficient ATP-dependent organic anion transporters in heterologous expression experiments, the contribution of three of the AtMRP genes (1, 11 and 12) to detoxification is marginal. Only knockouts in AtMRP2 exhibited a reduced sensitivity towards 1-chloro-2,4-dinitrobenzene, but not towards other herbicides. AtMRP2 but not AtMRP1, 11 and 12 is involved in chlorophyll degradation since ethylene-treated rosettes of atmrp2 showed reduced senescence, and AtMRP2 expression is induced during senescence. This suggests that AtMRP2 is involved in vacuolar transport of chlorophyll catabolites. Vacuolar uptake studies demonstrated that transport of typical MRP substrates was reduced in atmrp2. We conclude that within clade I, only AtMRP2 contributes significantly to overall organic anion pump activity in vivo.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Clorofila/metabolismo , Inativação Metabólica , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Transportadores de Ânions Orgânicos/metabolismo , Vacúolos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Alelos , Proteínas de Arabidopsis/genética , Transporte Biológico , Cotilédone/genética , Análise Mutacional de DNA , DNA Bacteriano , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glucosidases/metabolismo , Mutação/genética , Raízes de Plantas/genética , Regiões Promotoras Genéticas/genética , Testes de Toxicidade
2.
Plant Cell ; 19(6): 2023-38, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17601828

RESUMO

Phenotypic characterization of the Arabidopsis thaliana transparent testa12 (tt12) mutant encoding a membrane protein of the multidrug and toxic efflux transporter family, suggested that TT12 is involved in the vacuolar accumulation of proanthocyanidin precursors in the seed. Metabolite analysis in tt12 seeds reveals an absence of flavan-3-ols and proanthocyanidins together with a reduction of the major flavonol quercetin-3-O-rhamnoside. The TT12 promoter is active in cells synthesizing proanthocyanidins. Using translational fusions between TT12 and green fluorescent protein, it is demonstrated that this transporter localizes to the tonoplast. Yeast vesicles expressing TT12 can transport the anthocyanin cyanidin-3-O-glucoside in the presence of MgATP but not the aglycones cyanidin and epicatechin. Inhibitor studies demonstrate that TT12 acts in vitro as a cyanidin-3-O-glucoside/H(+)-antiporter. TT12 does not transport glycosylated flavonols and procyanidin dimers, and a direct transport activity for catechin-3-O-glucoside, a glucosylated flavan-3-ol, was not detectable. However, catechin-3-O-glucoside inhibited TT12-mediated transport of cyanidin-3-O-glucoside in a dose-dependent manner, while flavan-3-ol aglycones and glycosylated flavonols had no effect on anthocyanin transport. It is proposed that TT12 transports glycosylated flavan-3-ols in vivo. Mutant banyuls (ban) seeds accumulate anthocyanins instead of proanthocyanidins, yet the ban tt12 double mutant exhibits reduced anthocyanin accumulation, which supports the transport data suggesting that TT12 mediates anthocyanin transport in vitro.


Assuntos
Antiporters/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flavonoides/metabolismo , Proantocianidinas/metabolismo , Sementes/metabolismo , Fatores de Transcrição/metabolismo , Vacúolos/metabolismo , Antocianinas/química , Antocianinas/metabolismo , Antocianinas/farmacologia , Arabidopsis/efeitos dos fármacos , Vesículas Citoplasmáticas/efeitos dos fármacos , Flavonoides/biossíntese , Flavonoides/química , Glucosídeos/química , Glucosídeos/metabolismo , Glucosídeos/farmacologia , Mutação/genética , Proantocianidinas/biossíntese , Proantocianidinas/química , Regiões Promotoras Genéticas/genética , Transporte Proteico/efeitos dos fármacos , Sementes/química , Sementes/citologia , Sementes/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos , Vacúolos/efeitos dos fármacos , Leveduras/efeitos dos fármacos
3.
Plant Physiol ; 144(1): 432-44, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17369433

RESUMO

Barley (Hordeum vulgare) primary leaves synthesize saponarin, a 2-fold glucosylated flavone (apigenin 6-C-glucosyl-7-O-glucoside), which is efficiently accumulated in vacuoles via a transport mechanism driven by the proton gradient. Vacuoles isolated from mesophyll protoplasts of the plant line anthocyanin-less310 (ant310), which contains a mutation in the chalcone isomerase (CHI) gene that largely inhibits flavonoid biosynthesis, exhibit strongly reduced transport activity for saponarin and its precursor isovitexin (apigenin 6-C-glucoside). Incubation of ant310 primary leaf segments or isolated mesophyll protoplasts with naringenin, the product of the CHI reaction, restores saponarin biosynthesis almost completely, up to levels of the wild-type Ca33787. During reconstitution, saponarin accumulates to more than 90% in the vacuole. The capacity to synthesize saponarin from naringenin is strongly reduced in ant310 miniprotoplasts containing no central vacuole. Leaf segments and protoplasts from ant310 treated with naringenin showed strong reactivation of saponarin or isovitexin uptake by vacuoles, while the activity of the UDP-glucose:isovitexin 7-O-glucosyltransferase was not changed by this treatment. Our results demonstrate that efficient vacuolar flavonoid transport is linked to intact flavonoid biosynthesis in barley. Intact flavonoid biosynthesis exerts control over the activity of the vacuolar flavonoid/H(+)-antiporter. Thus, the barley ant310 mutant represents a novel model system to study the interplay between flavonoid biosynthesis and the vacuolar storage mechanism.


Assuntos
Apigenina/biossíntese , Glucosídeos/biossíntese , Hordeum/metabolismo , Vacúolos/fisiologia , Apigenina/química , Apigenina/metabolismo , Transporte Biológico , Proteínas de Transporte/metabolismo , Flavanonas/química , Flavanonas/metabolismo , Flavanonas/farmacologia , Glucosídeos/química , Glucosídeos/metabolismo , Glucosiltransferases/metabolismo , Hordeum/efeitos dos fármacos , Hordeum/genética , Modelos Biológicos , Mutação , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA