RESUMO
BACKGROUND: Immune checkpoint inhibitors (ICI) have revolutionized cancer treatment; however, only a subset of patients with brain metastasis (BM) respond to ICI. Activating mutations in the mitogen-activated protein kinase signaling pathway are frequent in BM. The objective of this study was to evaluate whether therapeutic inhibition of extracellular signal-regulated kinase (ERK) can improve the efficacy of ICI for BM. METHODS: We used immunotypical mouse models of BM bearing dual extracranial/intracranial tumors to evaluate the efficacy of single-agent and dual-agent treatment with selective ERK inhibitor LY3214996 (LY321) and anti-programmed death receptor 1 (PD-1) antibody. We verified target inhibition and drug delivery, then investigated treatment effects on T-cell response and tumor-immune microenvironment using high-parameter flow cytometry, multiplex immunoassays, and T-cell receptor profiling. RESULTS: We found that dual treatment with LY321 and anti-PD-1 significantly improved overall survival in 2 BRAFV600E-mutant murine melanoma models but not in KRAS-mutant murine lung adenocarcinoma. We demonstrate that although LY321 has limited blood-brain barrier (BBB) permeability, combined LY321 and anti-PD-1 therapy increases tumor-infiltrating CD8+ effector T cells, broadens the T-cell receptor repertoire in the extracranial tumor, enriches T-cell clones shared by the periphery and brain, and reduces immunosuppressive cytokines and cell populations in tumors. CONCLUSIONS: Despite the limited BBB permeability of LY321, combined LY321 and anti-PD-1 treatment can improve intracranial disease control by amplifying extracranial immune responses, highlighting the role of extracranial tumors in driving intracranial response to treatment. Combined ERK and PD-1 inhibition is a promising therapeutic approach, worthy of further investigation for patients with melanoma BM.
Assuntos
Neoplasias Encefálicas , Inibidores de Checkpoint Imunológico , Melanoma , Receptor de Morte Celular Programada 1 , Proteínas Proto-Oncogênicas B-raf , Animais , Camundongos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/patologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/imunologia , Melanoma/genética , Humanos , Imunoterapia/métodos , Feminino , Modelos Animais de Doenças , Microambiente Tumoral/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Camundongos Endogâmicos C57BL , MutaçãoRESUMO
Brain metastases (BMs) are an emerging challenge in oncology due to increasing incidence and limited treatments. Here, we present results of a single-arm, open-label, phase 2 trial evaluating intracranial efficacy of pembrolizumab, a programmed cell death protein 1 inhibitor, in 9 patients with untreated BMs (cohort A) and 48 patients with recurrent and progressive BMs (cohort B) across different histologies. The primary endpoint was the proportion of patients achieving intracranial benefit, defined by complete response, partial response or stable disease. The primary endpoint was met with an intracranial benefit rate of 42.1% (90% confidence interval (CI): 31-54%). The median overall survival, a secondary endpoint, was 8.0 months (90% CI: 5.5-8.7 months) across both cohorts, 6.5 months (90% CI: 4.5-18.7 months) for cohort A and 8.1 months (90% CI: 5.3-9.6 months) for cohort B. Seven patients (12.3%), encompassing breast, melanoma and sarcoma histologies, had overall survival greater than 2 years. Thirty patients (52%; 90% CI: 41-64%) had one or more grade-3 or higher adverse events that were at least possibly treatment related. Two patients had grade-4 adverse events (cerebral edema) that were deemed at least possibly treatment related. These results suggest that programmed cell death protein 1 blockade may benefit a select group of patients with BMs, and support further studies to identify biomarkers and mechanisms of resistance. ClinicalTrials.gov identifier: NCT02886585.